Tags: spring

Modeling Scenarios (1-10 of 10)

  1. 3-105-S-FrequencyResponse

    22 Jul 2020 | | Contributor(s):: Brian Winkel

    We describe the frequency response to a second order differential equation with a driving function as the maximum steady state solution amplitude and perform some analyses in this regard.

  2. 3-034-S-CarSuspensions

    14 Jul 2020 | | Contributor(s):: Therese Shelton, Brian Winkel

    We examine the spring-mass-dashpot that is part of a car suspension, how the ride is related to parameter values, and the effect of changing the angle of installation. We model a "quarter car'', meaning a single wheel.

  3. 3-026-S-SpringInverseProblem

    29 May 2020 | | Contributor(s):: Brian Winkel

    We are given data on the position of a mass in an oscillating spring mass system and we seek to discover approaches to estimating an unknown parameter.

  4. 3-031-S-SpringCost

    28 May 2020 | | Contributor(s):: Brian Winkel

    This is a situation where we are charged with analyzing costs for a spring to meet certain specifications.

  5. 3-040-S-FirstPassageTime

    07 Apr 2017 | | Contributor(s):: Brian Winkel

    We apply the notions of dampedness to second order, linear, constant coefficient, homogeneous differential equations used to model a spring mass dashpot system and introduce the notion of first passage time with several applications.

  6. 3-002-S-ModelsMotivatingSecondOrder

    30 Mar 2017 | | Contributor(s):: Brian Winkel

    We introduce several basic, but substantial, approaches to modeling the motion of a spring mass system using a standard second order, linear, constant coefficient differential equation obtained from Newton's Second Law of Motion and a Free Body Diagram. We do this using a set of data...

  7. 3-110-S-MilitarySpringMassApplication

    25 Feb 2017 | | Contributor(s):: Randy Boucher, Ivan Dungan

    The project is a collection of five different scenarios regarding the shock system of a trailer; the first three are chronological and the latter two are optional independent scenarios. In the first two scenarios, students must compare three different shock absorbers (or shocks) for the trailer....

  8. 3-101-S-SpringMassFirstTry

    22 Jul 2016 | | Contributor(s):: Keith Alan Landry, Brian Winkel

  9. 3-030-S-SecondOrderIntro

    22 Apr 2016 | | Contributor(s):: Brian Winkel

    SPANISH LANGUAGE VERSION  We have placed in Supporting Docs both Student and Teacher Version (LaTeX and PDF Versions) with a Spanish LaTeX Class file, SIMIODE-SPANISH.cls. Names will be x-y-S-Title-StudentVersion-Spanish and x-y--T-Title-TeacherVersion-Spanish.

  10. 3-060-S-DataToDifferentialEquation

    24 Dec 2015 | | Contributor(s):: Eric Sullivan, Kelly Cline

    Students use their knowledge of second-order linear differential equations in conjunction with physical intuition of spring-mass systems to estimate the damping coefficient and spring constant from data. The data is presented as {%5Cit total distance traveled} instead of displacement so the...