
Differential Equation Population
Models in a Slowly Varying

Environment

by

Majda Idlango

M.Math.Sc. (Alexandria University, Egypt)

B.App.Sc. (Al-Jabal Al-Gharbi University, Libya )

Dissertation submitted in fulfilment of the requirements for the degree of

Doctorate of Philosophy

School of Mathematical and Geospatial Sciences

RMIT University

Melbourne - Australia

January 2013



DECLARATION
The candidate hereby declares that the work in this thesis, presented for the award of

the Doctor of Philosophy and submitted in the School of Mathematical and Geospatial

Sciences, RMIT University:

• has been done by the candidate alone and has not been submitted pre-

viously, in whole or in part, in respect of any other academic award and

has not been published in any form by any other person except where

due reference is given, and

• has been carried out under the supervision of Assoc. Prof. John J.

Shepherd and Dr. John Gear

........................................

Majda Idlango

Certification
This is to certify that the above statements made by the candidate are correct to the best

of our knowledge.

.......................................

Assoc. Prof. John J. Shepherd

Senior Supervisor

.......................................

Dr. John Gear

Second Supervisor

II



Acknowledgements

Firstly, I would like to thank God for the opportunity to undertake this dissertation.

I also wish to sincerely acknowledge those who have supported and helped me through-

out my candidature. I express deep thanks for both the senior and second supervisors,

Associate Professor John J. Shepherd and Dr John Gear respectively, for their patient

and encouragement throughout last three years. Without their support, advice and effort

in both the analysis and writing, this research would not have been as successful and

rewarding.

I also wish to thank all my family and friends for their support. A special thanks goes

to my husband, Ismail, who always assisted and stood by my side and to my a lovely

daughter, Shayma, for her patience. I am also very grateful to my parents, relatives and

friends for their prayers and belief that I could achieve this dissertation.

III



Contents

1 Introduction 4

2 A Single Species Harvested Logistic Model 12

2.1 The Harvesting Model with Constant Parameters . . . . . . . . . . . . . . 14

2.2 Slowly Varying Harvesting Model Parameters . . . . . . . . . . . . . . . . 19

2.2.1 The Multiscale Harvesting Equation . . . . . . . . . . . . . . . . . 19

2.3 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Subcritical Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Supercritical Harvesting . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Subcritical Harvesting with Exponential Carrying Capacity . . . . . 28

2.4.2 Subcritical Harvesting with Periodic Carrying Capacity and Har-

vesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Subcritical Harvesting with Slowly Varying Periodic Growth Rate,

Carrying Capacity and Harvesting . . . . . . . . . . . . . . . . . . . 33

2.4.4 Supercritical Harvesting with Slowly Varying Periodic Growth Rate,

Carrying Capacity and Harvesting . . . . . . . . . . . . . . . . . . . 37

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Existence and Uniqueness for the Harvesting Model 40

IV



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Reformulation of the Initial Value Problem as an Integral Equation . . . . 43

3.3 Existence of a Unique Solution . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Existence for Subcritical Harvesting: Surviving Case . . . . . . . . . . . . 49

3.4.1 Assumption A4 is Valid . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Assumption A5 is Valid . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Existence for Subcritical Harvesting: Extinction Case . . . . . . . . . . . . 58

3.5.1 Assumptions A4 and A5 are Valid. . . . . . . . . . . . . . . . . . 61

3.6 Existence for Supercritical Harvesting: Extinction Case . . . . . . . . . . . 62

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Analysis of Transitions in a Harvested Logistic Model 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Solutions Away From the Transition Region ( Region 1 and 3) . . . . . . . 70

4.3 Solution within the Transition Region (Region 2) . . . . . . . . . . . . . . 71

4.4 A Uniform Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 An Example: Periodic Growth with Saturating Carrying Capacity and

Linear Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 A Harvested Logistic Model with Exact Solution: Comparison with the

Asymptotic Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.1 The Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6.2 The Asymptotic Approximations . . . . . . . . . . . . . . . . . . . 91

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 A Single Species Model Exhibiting an Allee Effect 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Constant Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 The Behaviour of the Solution as t → ∞. . . . . . . . . . . . . . . . 100

V



5.3 The Slowly Varying Allee Model . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 The Multiscale Equation . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 The Survival Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.4 The Extinction Case . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Comparison of the Implicit Expansions with Numerical Solutions. . . . . . 111

5.5 Transition Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.1 Subregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.2 Solution in the Transition Region . . . . . . . . . . . . . . . . . . . 120

5.5.3 A Uniform Approximation . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 A Single Species Logistic Model Subject to Saturating Holling II Har-

vesting 127

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Dimensionless Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 The Constant Parameter Model . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.1 Critical Points and Stability . . . . . . . . . . . . . . . . . . . . . . 129

6.3.2 The Implicit Solution for the Subcritical Case: 0 < σ < 1 . . . . . 135

6.3.3 Behaviour of the Subcritical Solution as t → ∞ . . . . . . . . . . . 136

6.3.4 The Implicit Solution of the Supercritical Case: σ > 1 . . . . . . . 136

6.4 Slowly Varying Model Parameters . . . . . . . . . . . . . . . . . . . . . . 139

6.4.1 The Multiscale Equation . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.3 The Subcritical Surviving Case, σ h(t1) < 1 . . . . . . . . . . . . . . 142

6.4.4 The Extinction Case, σ h(t1) > 1 . . . . . . . . . . . . . . . . . . . 149

6.5 Transition Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

VI



6.5.1 Solution within the Transition Region . . . . . . . . . . . . . . . . . 153

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusion 158

8 Bibliography 162

VII



List of Figures

2.1 A subcritical harvesting with survival that is given by (2.6) where µ =

0.35, 0.6 and σ = 0.1. The dotted line indicates the limiting state of

value≈ 0.89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 A subcritical harvesting with survival given by (2.11) with the same data

as Figure 2.1 and µ = 1.2, 2, . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 A subcritical harvesting with extinction for different µ values of 0.05, 0.1

and σ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Constant supercritical harvesting with extinction (2.16) where µ = 1.8, 3

and σ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Subcritical multiscale expansion (black solid) given by (2.35) and (2.46)

with numerical solution (blue dotted) using (2.58) where r0 = k0 = 1, ∆ =

0.02, Ω = 0.05 and µ = 0.2, 1.4, ϵ = 0.02 and σ = 0.05. . . . . . . . . . . . 29

2.6 Subcritical multiscale expansion (black solid) given by (2.46) with numer-

ical solution (dotted) using data of Figure 2.5 with µ = 0.04. . . . . . . . 30

2.7 Survival population with subcritical harvesting given by (2.35) (in terms

of hyperbolic tangent) involving (2.62) with σ = 0.11, ϵ = 0.03 and µ = 0.8. 31

2.8 Survival with subcritical harvesting given by (2.46) (in terms of hyperbolic

cotangent) with the same data as Figure 2.7, but µ = 1.2. . . . . . . . . . 32

2.9 Subcritical harvesting with extinction given by (2.46) (in terms of hyper-

bolic cotangent) using same data as Figure 2.7, but µ = 0.1. . . . . . . . . 32

VIII



2.10 Evolution of the population subject to subcritical harvesting with survival

to a slowly varying state given by (2.35) using (2.63) where σ = 0.02,

µ = 0.032 and ϵ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Evolution of the population subject to the subcritical harvesting given by

(2.46) of data of Figure 2.10, but now with starting population µ = 0.012

satisfies (2.50). The dashed curve shows 10δ , where δ is the indicator from

(2.25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 Evolution of the population given by (2.35) for the time varying data of

Figure 2.10, but with σ = 0.02, ϵ = 0.05 and various µ = 0.032, 0.5, 0.8, 2.0 35

2.13 Evolution of the population subject to subcritical harvesting with survival to a slowly

varying state, for data used in Figure 2.10, where ϵ = 0.05, 0.1, 0.2, 0.5 in clockwise order

starting from the top left corner. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.14 Evolution of the population subject to supercritical harvesting given by

(2.53) with extinction population where µ = 1.0, σ = 0.5, and ϵ = 0.05 . . 38

3.1 Graphical representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Graphical representation of the Regions 1, 2 and 3. . . . . . . . . . . . . . 70

4.2 Plot of δ(ϵt) given by (4.2) with σ = 0.05 ϵ = 0.05 using data of (4.48). . . 81

4.3 Plot of δ(ϵt) given by (4.2) with σ = 0.05 ϵ = 0.01 using data of (4.48). . . 81

4.4 Plot of the numerical solution of (4.1) using (4.48), where µ = 0.3, ϵ =

0.05, σ = 0.05 and t̄ ≈ 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Plot of the numerical solution of (4.1)(continuous curve) and the leading

term asymptotic approximation (4.43) up to the transition point (dashed

curve) using (4.48), with µ = 0.3, ϵ = 0.05, σ = 0.05 and t̄ ≈ 58. . . . . . . 84

IX



4.6 Plot of the leading term expansion (2.36) (continuous curve) and transi-

tion solution (4.27) (solid with filled squares) with common terms (4.29)

(dashed line) and Subcritical numerical solution of (4.1)(dotted), using the

parameters (4.48) µ = 0.3, ϵ = 0.05, σ = 0.05. . . . . . . . . . . . . . . . . 84

4.7 Plot of the uniformly valid subcritical expansion (4.43)(continuous curve)

and compared with numerical solution (dashed) using the parameters (4.48)

with µ = 0.3, ϵ = 0.05, and σ = 0.05. . . . . . . . . . . . . . . . . . . . . . 85

4.8 Plot of the two terms of supercritical expansion (4.5)(continuous curve)

using (4.48) where µ = 0.3, ϵ = 0.05 and transition solution (4.27) (solid

with filled squares), with common terms (dashed). . . . . . . . . . . . . . . 85

4.9 Plot of the valid approximate expansion (4.47) (continuous curve) and

the numerical solution (dashed) for the choice (4.48) where µ = 0.3, ϵ =

0.05, σ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 Plot of the composite expansions (4.43), (4.47) (solid) with the numerical

solution of (4.1)(dashed), considering the choice (4.48) with µ = 0.3, ϵ =

0.05, σ = 0.05 and t̄ ≈ 58.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Plot of the numerical solution of (4.1) using (4.48), where µ = 1.3, ϵ =

0.01, σ = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.12 Plot of the numerical solution of (4.1)(continuous curve) and the two term

asymptotic approximation up to the transition point (2.47) (dashed curve)

using (4.48), where µ = 1.3, ϵ = 0.01, σ = 0.05 and t̄ ≃ 33 . . . . . . . . . . 87

4.13 Plot of leading term asymptotic expansion (2.47) (continuous curve) and

transition solution (4.27) (solid with filled squares) with common terms

(4.29)(dashed line) and Subcritical numerical solution of (4.1)(dotted), us-

ing the parameters (4.48) with µ = 1.3, ϵ = 0.01, and σ = 0.05 . . . . . . . 88

X



4.14 Plot of uniform subcritical expansion (4.44) (continuous curve), considering

the parameters (4.48) with µ = 1.3, ϵ = 0.01, and σ = 0.05, and compared

with numerical solution (dashed ). . . . . . . . . . . . . . . . . . . . . . . . 88

4.15 Plot of composite expansions (4.44), (4.47)(solid) and numerical solution of

(4.1)(dashed) using (4.48) where µ = 1.3, ϵ = 0.01, σ = 0.05 and t̄ ≃ 33.34.. 89

4.16 Comparing the exact solution (4.62) (solid) with the asymptotic approxi-

mations (4.68) and (4.73) (dotted) where ϵ = 0.05, µ = 0.2 and T = 40

(dashed vertical). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 The exact solution (4.62) (solid) and gathering the two asymptotic ap-

proximations (4.69) and (4.73)(dotted) where ϵ = 0.5, µ = 2 and T =

20(Transition point). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Growth curves of Logistic model and Allee model . . . . . . . . . . . . . . 97

5.2 Typical solutions for the system (5.8) as given by (5.9), for α = 2 and

µ = 0.2, 0.7, 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 The asymptotic expansion (5.12) (dotted) and the solution from (5.9)

(solid) where α = 1.5, µ = 0.8, 1.2, and t ≥ 4. . . . . . . . . . . . . . . . . 102

5.4 Comparison of asymptotic expansion (5.14) (dotted) the solution from (5.9)

(solid) where α = 1.5, µ = 0.4 and t ≥ 3. . . . . . . . . . . . . . . . . . . . 103

5.5 The leading term approximation (5.31) (dotted curve) and the numerical

solution of (5.5) (solid curve) for a surviving population with r(ϵt), k(ϵt)

and m(ϵt) given by (5.52), and µ = 0.75. . . . . . . . . . . . . . . . . . . . 113

5.6 The leading term approximation for a surviving population (5.31) (dotted

line) and the numerical solution (solid line) for the surviving population

case with the choices of Figure 5.5, but for large times t. . . . . . . . . . . 114

XI



5.7 Evolution of the leading term approximation for a surviving population

(5.31)(dotted) compared with the numerical solution (solid) of (5.52), with

µ = 1.14 for a small time period. . . . . . . . . . . . . . . . . . . . . . . . 114

5.8 The leading term approximation for a surviving population (5.31) (dotted)

compared with the numerical solution of (5.5) (solid) for data of Figure 5.7

and large times t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 The leading term approximation for a surviving population (5.31) (dotted)

compared with the numerical solution of (5.5) (solid) for data of Figure

5.7, but with different initial values µ = 0.5, 0.75, 1.25, 1.5. . . . . . . . . . 115

5.10 Evolution of a surviving population (5.31) (dotted) compared with the numerical so-

lution of (5.5) for data used in Figure 5.5, where ϵ = 0.05, 0.2, 0.5 in clockwise order

starting from the top left corner. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.11 Comparison of the leading approximation (5.44) (dotted) for an extin-

guished population with the numerical solution of (5.5) (solid) for r(ϵt), k(ϵt)

and m(ϵt) as defined by (5.52) but now with µ = 0.1. . . . . . . . . . . . . 117

5.12 Plot of the composite expansion (5.83) (dotted) and the numerical solution

of (5.54)(solid), where k(ϵt) = 0.2+ (1 + eϵt)−1 with µ = 0.4, ϵ = 0.01, α =

3 and t̄ ≈ 187. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.13 Plot of the composite expansion (5.84) (dotted) and the numerical solution

of (5.54)(solid) using the same choice of k(t1) as in Figure 5.12, where

µ = 1.2, ϵ = 0.05, α = 3 and t̄ ≈ 37 µ = 1.2. . . . . . . . . . . . . . . . . . 124

6.1 Plot of the harvesting function σ p
1+p

. . . . . . . . . . . . . . . . . . . . . . 130

6.2 The graphs of 1− p/η and σ/(1 + p) for various values of η and σ. . . . . . 132

6.3 Plot of boundaries of parameter σ as defined by (6.19). . . . . . . . . . . 133

6.4 Plot of subcritical exact solution for (6.24) as given by (6.25), where σ = 0.5

and µ = 0.1, 0.5, 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

XII



6.5 The subcritical asymptotic expansion (6.26)(dotted ) with numerical solu-

tion of (6.24) (solid line) where σ = 0.5 and µ = 0.1, t ≥ 5. . . . . . . . . 137

6.6 The subcritical asymptotic expansion (6.16)(dotted line) with numerical

solution of (6.24) (solid line) where σ is as in Figure 6.5 and µ = 1, t ≥ 1. 137

6.7 Plot of exact supercritical solution (6.29), where σ = 1.5 and µ = 0.5, 1. 138

6.8 The asymptotic expansion (6.32)(dotted line) for supercritical behaviour

and the numerical solution of (6.5) (solid line) where σ = 1.5 and µ =

0.5, t ≥ 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.9 The leading term approximation of surviving population (6.54) (dotted)

and the numerical solution of (6.3)(solid) using the parameters (6.59) where

ϵ = 0.02 , σ = 0.5 with µ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.10 Using same choices as in Figure 6.9 but for large t, a comparison of the ap-

proximate solution (6.54) (dotted) and the numerical solution of (6.3)(solid).146

6.11 Comparison of the surviving population (6.54) (dotted line) with numerical

solution of (6.3)(solid) where σ, h(ϵt) as are in Figure 6.9, while µ = 0.8 . . 146

6.12 Comparison of the surviving population (6.54)(dotted) with numerical so-

lution (solid) of (6.3) where σ, µ and h(ϵt) are as in Figure 6.11 . . . . . . 147

6.13 Evolution of a surviving population (6.54)(dotted) compared with the numerical solution

of (6.3) for data used in Figure 6.11, where µ = 2.0 and ϵ = 0.06, 0.08, 0.2 in clockwise

order starting from the top left corner. . . . . . . . . . . . . . . . . . . . . . . . 148

6.14 Comparison of the surviving population (6.54)(dotted) with numerical so-

lution of (6.3) (solid) where h(ϵt) satisfies (6.61)) with r = 1, k = 1, λ =

0.75, σ = 0.3 and µ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.15 Evolution of the leading term solution of the extinguished population (dot-

ted) given by (6.73) and numerical solution of (6.3)(solid) for σ = 1.05, h(ϵt) =

1.0 + 0.01 sin(ϵ t) with µ = 2 and ϵ = 0.02. . . . . . . . . . . . . . . . . . . 152

XIII



Summary

Many investigations have been carried out that analyse population dynamics using dif-

ferential equations where the governing parameters of the models concerned are assumed

to be a constant. However, in reality, this assumption of constancy is not always true,

since the dynamics of such models can be influenced by regular environmental changes

such as food availability, birth rates, etc. This may lead to the defining parameters of

such population models varying with time, and this time variation could occur on one

time scale or on a number of different time scales. In general, for such cases, an exact

solution of population evolution problems involving the model cannot be obtained and

numerical solution methods must be used. However, when the variation of the model

parameters is slow relative to other quantities, analytic multi-scaling technique can be

applied to obtain approximate solutions which can successfully represent the variation of

the population over time. This technique is widely applied in the fields of physics and

engineering and has begun to become more established as a technique in recent times in

population dynamics.

This thesis considers single species differential equations population models in which

the model parameters are functions of time that is slow compared to the intrinsic time

changes of the population and uses multi-timing methods to obtain close-form (explicit

or implicit ) approximate expressions for the evolving populations represented by these

models.

Chapter 1 introduces the background of the single species population models studied

in this research. These are based on simple extensions of the basic logistic growth equa-

tion to a range of other population models. It also presents the development of theory of

environment variations or fluctuations in recent studies and their effect on the defining

parameters of these models.

1



Chapter 2 begins by reviewing previous analysis of a harvested logistic growth model

where the population is harvested subject to constant environmental factors. The work

of Nguyen [50] is extended to the situation where all of the growth rate, carrying capacity

and harvesting rate vary on a time scale much longer than the time variation of the pop-

ulation itself. A general multi-scaled method is used to construct analytic approximate

expansions in the three different categories of a subcritical harvested population with sur-

vival, subcritical harvested population with extinction and supercritical harvesting with

extinction. These results are compared with a numerical solution of this model for a

number of specific examples.

In Chapter 3, a contraction mapping approach is used to provide a rigorous proof

of the validity of the various approximations constructed in Chapter 2, under suitable

assumptions. This also establish the existence and the uniqueness of an exact solution

of the slowly varying harvesting problem, in a suitable small neighbourhood of these

approximations

In Chapter 2, the approximate expansions for the population for subcritical or super-

critical harvesting were examined separately. Chapter 4 considers a case of transition,

that is, the result of increasing the harvesting rate from the subcritical (small) case to

supercritical (large) case. Here, the approximations of Chapter 2 fail to represent the

solution at the transition point and so a transition analysis is required. A particular case

is examined where the population is harvested subcritically and survives to its carrying

capacity and as the harvesting becomes supercritical the population faces extinction and

two uniform composite expansions are obtained.

Chapter 5 considers a single species population model involving an Allee effect, where

by reduction of the population below a critical value cause extinction. It begins by

analysing the model with constant coefficients and establishes the behaviour of the so-

lution for a large time period. The same multiscaling analysis as applied in Chapter 2

2



is used to extend this analysis to a situation where the model parameters, the growth

rate, the carrying capacity and the critical population rate are considered in a slowly

varying environment. Implicit approximate representations for a surviving and for an ex-

tinguished population are obtained. The situation when the carrying capacity reduces to

a value below the critical level is also analysed, using a transition analysis, and a uniform

approximation to this transition situation is obtained.

In Chapter 6, a more complex form of the harvested logistic model discussed in Chap-

ter 2 is studied, where the harvesting term is represented by a saturating Holling type

II functional response. The stability and solution of the constant parameter model is

analysed, and this is extended to the case where the harvesting rate is considered to be

a function of slow time. Here, the analysis as used in Chapter 5 is employed to obtain

implicit approximations for both survival and extinction states of the population. The

accuracy of the approximate expansions are compared with the numerical solution using

particular choices satisfying particular conditions.
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Chapter 1

Introduction

In the study of the dynamics of single species populations based upon biological and/or

ecological assumptions, different mathematical techniques have been used to model the

evolution of these populations. Typically, these models take the form of initial value

problems for ordinary differential equations where the governing model parameters are

taken to be constants. The structure of these models is based on the simple form of

Malthus-Verhulst logistic growth models.

The generalized autonomous single species population model takes the form

dP

dT
= F (P )−G(P ), P (0) = P0, (1.1)

where P (T ) is the population at times T ≥ 0, F (P ) is the growth rate, G(P ) is the

removal rate and P0 is a positive constant that represents the initial size of the population.

The simplest model of this type of population evolution was introduced by Malthus

[43] and also discussed in ([5, 6, 19, 52] among others). In this model, the population

grows exponentially according to the Malthus’ law :

dP (T )

dT
= RP (T ), P (0) = P0, (1.2)

where R represents the growth rate. Here, the per capita growth rate of the population

dP/P dT , is a constant and when R is positive, there is growth without limit; while when
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R is negative, there is exponential decay. In this model, G(P ) = 0; i.e., the growth is

unconstrained.

This model has been widely applied; Malthus’ simple model is discussed in Haberman[32]

where it is applied to the growth of human population. Under this model, human popu-

lation is expected to grow exponentially and humanity would face starvation and possible

extinction if food sources were outgrown.

In real world populations, species have limited resources for survival and cannot grow

without limit, in contrast to the unconstrained growth predicted by the simpler expo-

nential (Malthusian) growth model. Thus, Verhulst [62] reconsidered these effects and

proposed that the population growth should be modelled by the logistic growth equation

dP

dT
= RP (1− P

K
), P (0) = P0, (1.3)

where the positive constant K is termed the carrying capacity and provides an upper

limit to the ability of the environment to sustain the given species. Banks ([5], Ch 2) and

Brauer, et al [12] describe this in general details (see further [6, 7, 19, 45, 48]. )

Gause [20] discussed an example of how the logistic equation can be applied to the growth

of a yeast population. Pearl and Reed [51] presented an application of the logistic model

to the growth of human population in the United States, and Banks ([5], Ch2) also applied

it in the field of technology substitution.

In reality, the growth of any single species population can be affected by various factors,

such as depletion of fishing stocks, hunting, natural disasters and immigration etc. Thus,

if population is extracted from the logistic growth model (1.3) at a constant rate H, we

arrive at the harvested logistic model which is represented by the initial value problem

dP

dT
= RP (1− P

K
)−H, P (0) = P0, (1.4)

where R,K and H are as defined above. Here, G(P ) = H, a positive constant.

This model has been investigated in many related studies when R, K and H are positive
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constants, notably Brauer and Sanchez [13], Banks ([5], §2.2) and others [5, 6, 12, 13, 19,

33, 48, 50, 55]. These studies have identified two particular situations that depend on the

harvest rate. One is subcritical harvesting, where the population survives to a positive

constant limiting value, or is extinguished in finite time. Whether this last occurs depends

on the initial population P0. The other is supercritical harvesting where for any initial

population P0, the population always reduces to zero in finite time; i.e., is extinguished.

Banks [5] has illustrated some applications of (1.4) in fish harvesting and the population

growth of the sandhill crane.

A key feature of the Verhulst model (1.3) is that the per capita growth rate of the

population, R (1−P/K) is a maximum when the population is small and reduces to zero

as the population converges to the limiting state K. However, in some real population

models, when the per capita population growth rate is reduced to such low levels, the

extinction of that population may occur.

Courchamp et al [17] described some causes of this behaviour in several categories that

affect a single species, such as low possibility of finding mates, a reduction in fertilization

etc. This phenomenon, termed the Allee effect (Allee, [2], Allee et al [3], Stephens et

al[58]), contradicts the predictions of (1.3), and so a more comprehensive model is needed

to accommodate this effect. Models describing the Allee effect take various mathematical

forms, as discussed by Boukal et al [11] and Gonzalez-Olivares [22] and others [12, 23, 58].

One such form is described by the initial value problem

dP

dT
= RP

(
P

M
− 1

)(
1− P

K

)
, P (0) = P0, (1.5)

where M is a positive constant that represents a critical population threshold, with 0 <

M < K (see [17]). This may be viewed as a variant of the logistic model (1.3), with a

population dependent growth rate, R (P/M − 1), negative if P is small. The model (1.5)

has the property that when 0 < M < P0 < K, the population survives to the carrying

capacity, K. However, when 0 < P0 < M < K, the population is driven to zero, i.e., is
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extinguished, displaying an Allee effect as described above.

A more general form of single species harvested population model takes the form of

the initial value problem

dP

dT
= RP

(
1− P

K

)
− HP

A+ P
, P (0) = P0, (1.6)

where R, K, H and A are all positive.

Here, the harvesting term is represented by a Holling type II functional response,

HP

A+ P
. (1.7)

The structure and the theory of this function is discussed by Berryman et al [10] and

Bazykin et al [6], (see also [16, 44, 45]) and Holling [34] summarized how the size of

harvesting (or predation) can have an effect on the overall population behaviour. In

particular, as P → ∞, (1.7) tends to H, a constant. In fact, for all P > 0,

0 < G(P ) =
HP

A+ P
< H;

i.e., this harvesting term displays a saturation effect. Ghansah et al [21] argued that “at

low population the predator is limited by prey availability, so that G(P ) increases with

increasing prey population; at very high population, G(P ) saturates to some constant

H, determined by the predators’ intake capacity or processing rate”. Ghansah has also

examined in detail the stability index of the the differential equation of (1.7).

There are many models for the evolution of single species of populations, taking the

form of initial value problems. In many cases, the differential equations in the models

may be solved in closed form, whether explicit or implicit. A catalogue of exact solutions

for a range of such models may be found in Tsoularis and Wallace [61], and whether

these solutions are used depends on how complex they are, and more often than not, the

problem is solved numerically.

In all the above single species models the governing parameters of the models are con-

sidered to be constant. However, in many real populations, regular environmental changes
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such as food shortage, climate change, migrating species and overfishing etc can influence

the dynamics of such models by causing these parameters to be time dependent. Many

recent studies have attempted to take account of these changes, for example Rosenblat

[54] and Legovic [41] have considered the effect of a periodic variation. Similarly, May [44]

examined the effect of the time variation of parameters in the logistic model. Benardete,

et al [8] and Cromer [18] among others([7, 54]) showed that a small periodic change in the

harvesting rate in the harvested logistic equation (1.4) may result in driving an otherwise

surviving population to extinction. Rizaner and Rogovchenko[53] and Graef et al [24] ex-

amined the behaviour of an Allee model with parameters which vary with time, obtained

a periodic solution for the model, and proved the existence of this solution.

Thus the parameters of such models can and do change with time and this variation

may have quite a dramatic effect on the population evolution. In such cases, an exact

solution of the initial value problems describing the model is often impossible to obtain

and an approximate solution must be constructed using numerical methods. However,

these numerical solutions don’t usually provide a general representation of the behaviour

of the solution of such problems but can only show a limited response to particular input

data (for example [46]). Thus, for a better understanding of the impact of time variation in

model parameters and its effect on population behaviour, analytic approximate methods

can be used that provide a valid general formula for different general cases.

In many situations, the model parameters vary on a time scale much larger than that

intrinsic to the model itself. This may arise in response to relatively slowly changing

environmental effects, for example. In this case the analysis of the model may be split in

two on the basis of these two time scales. This procedure was used in a qualitative way in

an analysis of the spruce budworm problem, by Ludwig et al [42]. However, no analytical

solutions were obtained.

Following similar successful studies (among others, [26, 50, 59], we will here consider
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the particular situation where the model parameters are regarded as changing slowly

compared with the variation of the overall population. This slow change may, in general,

arise from model parameters changing on a range of time scales that are slow relative

to the overall population time frame. This is too general for this study, so two time

scales only are considered in the present research; the time scale on which the population

evolves and the (single) time scale on which the model parameters vary. Slow variation

of parameters thus means this second time scale is large relative to the first. To examine

this situation, multi-scaling methods as presented in Bush [15] and Nayfeh [49] will be

applied to obtain approximations to the solutions of the given problems.

The approach outlined in the above references comes from a family of related meth-

ods referred to as multi-timing or multi-scaling methods. They have been extensively

researched as discussed in [15, 35, 47, 49] and are well-established in the literature of both

the engineering and the physical sciences. A detailed and interesting survey of techniques

and history of application of these methods may be found in Nayfeh [49], chapter 6. They

rely on an ability to recognize that the problem consideration involves variation on two or

more time scales that are disparate; i.e., they are all ‘slower’ than a fundamental (intrin-

sic) time scale. Very often, these time scales are easily recognized from the formulation

of the problem; but not always.

To illustrate the method in a very simple case, consider the task of finding an approx-

imation to the solution of the initial value problem

dx

dt
+ a(ϵt)x2 = 0; x(0, ϵ) = 1, (1.8)

where a(.) is a suitably smooth function, and ϵ is a small positive parameter. This problem

shows variation on two time scales- the ‘intrinsic’ time scale t0 = t and the ‘slow’ time

scale t1 = ϵt governing the variation of a(ϵt). To implement the multiscale technique

for (1.8), we assume that x(t, ϵ), the (unknown) solution of (1.8) may be regarded as

a function x̃(t0, t1, ϵ) of two variables t0, t1 and the parameter ϵ. We then assume that
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x̃(t0, t1, ϵ) may be represented by the perturbation expansion

x̃(t0, t1, ϵ) = x̃0(t0, t1) + ϵx̃1(t0, t1) + . . . (1.9)

while the derivative term converts according to

d

dt
= D0 + ϵD1 (1.10)

where D0, D1 are partial derivatives taken with respect to t0, t1.

Substituting (1.9) into (1.8) and noting (1.10), we arrive at partial differential equations

for x̃0, x̃1;

D0x̃0 + a(t1)x̃
2
0 = 0, (1.11)

D0x̃1 +D1x̃0 + 2 a(t1)x̃0 x̃1 = 0, (1.12)

which may (in principle) be solved for x̃0, x̃1 in terms of arbitrary functions c0(t1), c1(t1).

Various side conditions governing the expected form of the solutions of (1.11), (1.12) may

then be applied to obtain equations determining c0(t1), c1(t1) in terms of constants, which

are then evaluated from the known initial condition.

These methods have also been successfully used to generate approximate solutions to

a number of related slowly varying population problems. Thus, Shepherd and Stojkov [57]

and Stojkov [59] studied the logistic growth model (1.3) where only the carrying capacity

K varied slowly. Their successful approach was based on two linear time scales, normal

population time, t0 and slow parameter time t1, given by

t0 = t, and t1 = ϵt; with ϵ ≪ 1. (1.13)

Grozdanovski et al [29] and Shepherd et al [56] considered the more general case where

both of R and K were considered to be slowly varying functions and were led to introduce

a more general (nonlinear) normal time scale t0, and slow time t1, given by

t0 =
1

ϵ
g(t1), and t1 = ϵt (1.14)
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respectively, where g(t1) is expected to be a positive valued function on all t1 > 0, to

be determined, with g(0) = 0. A similar analysis for the Gompertz model was carried

out by Grozdanovski [25] and Grozdanovski and Shepherd [27] using the more general

time scales (1.14). Grozdanovski [26] and Grozdanovski et al[28] considered a related

application of population dependent harvesting where the harvesting term expressed was

proportional to the population and again the general scale times (1.14) were employed to

obtain approximate solutions. Nguyen [50] applied multiscaling analysis to (1.4) where

only the harvesting rate, H, varied slowly, while R andK were positive constants. Idlango

et al [40] extended the work of Nguyen to the population behaviour of (1.4) for the more

general case where R, K and H are functions of slow time using time scales (1.14).

These investigations all involved obtaining approximate solutions using (1.14) in sit-

uations where the population evolved to some slowly varying limiting state, (survived)

or was driven to zero in finite or infinite time (extinguished). The situation where there

was a transition between one state and another via a transition point was analysed by

Grozdanovski et al [30], using a mix of multitiming and matching (see Nayfeh [49]) meth-

ods. This approach was also used to analyse transitions in a generalized logistic model,

in Shepherd et al [56].

In the following chapters, we will apply these multiscaling techniques to analyse the

problems (1.4), (1.5) and (1.6) described above, where the model parameters vary on a

single common slow time scale.

We will find that these techniques provide useful analytical approximations to the solu-

tions of these problems that are valid for a general range of parameter values. We will

compare these approximations with appropriate numerical solutions and find the agree-

ment to be very good indeed.
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Chapter 2

A Single Species Harvested Logistic

Model

As mentioned in Chapter 1, the logistic model with harvesting was analysed in many

studies (See for example [5]), where the parameters were considered to be constants.

However, in reality, the model parameters of (1.4) may vary with time, T , and this

variation may originate from changes (often periodic) in the surrounding environment

such as seasonable variations, food shortage and damage to natural habitats etc. These

factors cause us to reconsider the parameters R,K and H as functions of time, so that

the initial value problem (1.4) is replaced by

dP

dT
= R(T )P

(
1− P

K(T )

)
−H(T ), P (0) = P0. (2.1)

Now, let us assume that R(T ), K(T ) and H(T ) vary on the time scales TR, TK and TH

so that these functions may be expressed in the form

R(T ) = R0 r(T/TR),

K(T ) = K0 k(T/TK),

H(T ) = H0 h(T/TH),
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where R0, K0 and H0 are representative values of these functions respectively and r, k

and h are dimensionless functions. When R and/or K and/or H are constant, this means

that R = R0 and so r ≡ 1 and/or K = K0 and so k ≡ 1 and/or H = H0 and so h ≡ 1.

By expressing the non-dimensional time scale by t = R0T and non-dimensional pop-

ulation scale by p = P/K0, (2.1) can be written in dimensionless form as

dp

dt
= r(

R−1
0

TR

t) p

1− p

k(
R−1

0

TK
t)

− σ h(
R−1

0

TH

t). (2.2)

Assuming that R, K, H vary on the same time scale, that is TR = TK = TH = T ∗, this

gives (2.2) as

dp(t, ϵ)

dt
= r(ϵt) p(t, ϵ)

(
1− p(t, ϵ)

k(ϵt)

)
− σ h(ϵt), p(0, ϵ) = µ. (2.3)

where ϵ = (T ∗R0)
−1 measures the ratio of the intrinsic population variation time scale,R−1

0 ,

to T ∗, that of R, K and H (see a similar discussion in Grozdanovski et al. [29]). The

positive non-dimensional ratios of characteristic values σ (the non-dimensional harvesting

rate) and µ ( the non-dimensional initial population value) are given by

σ =
H0

R0K0

and µ =
P0

K0

(2.4)

respectively.

Note that p, the solution of (2.3) depends on all the parameters ϵ, σ and µ (as well as

time, t). However, in the calculations to follow, we will focus attention on its ϵ-dependence

only; so that explicit dependence on σ and µ will be suppressed. When T ∗ is large relative

to R−1
0 , the variation of R, K and H is small. This is characterised by the condition that

ϵ be small.

We note that in (2.3), r, k and h all vary on the same slow time scale ϵt. This is physically

reasonable, since we might expect slow variation in the carrying capacity k to be reflected

in the growth rate, r. Such slow variation might arise from slowly varying environmental

factors. Further, such environmental variation might reasonably be supposed to affect the
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harvest rate, h.

Thus, (2.3) might reasonably be expected to model a species with growth rate r and

carrying capacity k being consumed by a predator which consumes at rate σh. Both

species and predator are affected by the slowly varying background environmental factors.

2.1 The Harvesting Model with Constant Parame-

ters

In this case where R, K and H are positive constants, we put r(ϵt) ≡ k(ϵt) ≡ h(ϵt) ≡ 1

as noted above. Then, (2.3) becomes

dp(t)

dt
= p(t) (1− p(t))− σ, p(0) = µ. (2.5)

where σ and µ given by (2.4).

When solving the initial value problem (2.5) for p, we must consider two distinct cases:

[1] when σ < 1
4
there is subcritical harvesting and the solution of (2.5) is

p(t) =
1

2

(
1 +

√
1− 4σ tanh

[
1
2
(
√
1− 4σ t+ c)

])
, (2.6)

where

c = 2arctanh(
2µ− 1√
1− 4σ

). (2.7)

Since the value of c depends on the value of µ, this leads us to discuss the following

points:

(a) c has a real value when

| 2µ− 1√
1− 4σ

| < 1 (2.8)

which requires that µ lies in the range

1
2
(1−

√
1− 4σ) < µ < 1

2
(1 +

√
1− 4σ). (2.9)
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In this case, and from (2.6) we can see that as time progresses, the tanh(..)

function tends to 1 and so the population will tend to a nonzero limiting state

i.e.,

p(t) → 1
2
(1 +

√
1− 4σ), (2.10)

and so, the population survives.

(b) c is a complex when µ lies outside the interval (2.8), and since in this case, c

can be expressed as c = cR ± i π, where cR is a real part then

tanh(1
2
(
√
1− 4σ t+ cR ± i π)) = coth(1

2
(
√
1− 4σ t+ cR)).

This leads to replace the hyperbolic tangent in (2.6) with a hyperbolic cotan-

gent. i.e., the solution of (2.5) becomes

p(t) =
1

2

(
1 +

√
1− 4σ coth

[
1
2
(
√
1− 4σ t+ cR)

])
, (2.11)

where

cR = 2arccoth(
2µ− 1√
1− 4σ

). (2.12)

The behaviour of the solution (2.11) is now determined by the value of cR, via

the value of µ.

I). When µ satisfies

µ > 1
2
(1 +

√
1− 4σ), (2.13)

so that 0 < cR < ∞, p(t) → 1
2
(1+

√
1− 4σ) as t → ∞, i.e., the population

p(t) survives to a limiting positive finite state (2.10).

II). When µ satisfies

µ < 1
2
(1−

√
1− 4σ), (2.14)

so that −∞ < cR < 0, p(t) → −∞ as t → −2 cR/
√
1− 4σ > 0, and the

population p(t) presented by (2.11) reduces to zero in finite time.
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If td represents the extinction time of the population with subcritical harvesting,

then

1

2

(
1 +

√
1− 4σ coth

[
1
2
(
√
1− 4σ td + cR)

])
= 0,

where cR is given by (2.12) and this gives td as

td =
−2√
1− 4σ

(
arccoth(

2µ− 1√
1− 4σ

)− arccoth(
−1√
1− 4σ

)

)
. (2.15)

[2] when σ > 1
4
the harvesting is supercritical, and so the solution of (2.5) becomes

p(t) =
1

2

(
1−

√
4σ − 1 tan

[
1
2

√
4σ − 1t+ arctan(

1− 2µ√
4σ − 1

)

])
. (2.16)

In this case, as
{

1
2

√
4σ − 1 t+ arctan( 1−2µ√

4σ−1
)
}
→ π/2, the tangent function tends towards

−∞, so that the population presented by (2.16) reduces to zero in finite time; i.e., the

population will become extinct in finite time.

Now, if we suppose that at time te the population with supercritical harvesting extin-

guishes, that is, the population reaches zero at finite time te and so

1

2

(
1−

√
4σ − 1 tan

[
1
2
(
√
4σ − 1 te) + arctan(

1− 2µ√
4σ − 1

)

])
= 0.

Thus

te =
2√

4σ − 1

(
arctan(

1− 2µ√
4σ − 1

) + arctan(
1√

4σ − 1
)

)
(2.17)

The above subcases (a)-(b) of the solutions of (2.5) are displayed in Figures 2.1-2.4.

The Figure 2.1 illustrates the subcritical harvesting (where σ = 0.1 < 1
4
) for initial

populations µ = 0.35, 0.6, that satisfy the inequality (2.8), i.e.,

0.113 < µ < 0.887,

and as we can see the population survives to the finite state (2.10) at the value of 0.89.

Figure 2.2, with the initial populations µ = 1.2, 2 satisfying the criterion (2.13) and
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Figure 2.1: A subcritical harvesting with survival that is given by (2.6) where

µ = 0.35, 0.6 and σ = 0.1. The dotted line indicates the limiting state of

value≈ 0.89.

Figure 2.2: A subcritical harvesting with survival given by (2.11) with the

same data as Figure 2.1 and µ = 1.2, 2, .
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Figure 2.3: A subcritical harvesting with extinction for different µ values of

0.05, 0.1 and σ = 0.1.

Figure 2.4: Constant supercritical harvesting with extinction (2.16) where

µ = 1.8, 3 and σ = 2.
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higher than limiting state, shows that the population declines but to surviving state.

However, in Figure 2.3, even though the harvesting is subcritical, the initial population

µ = 0.05, 0.1 < 0.113 is too low, so that it becomes extinct in finite time (2.15), where

td = 0.68, 2.66 respectively.

In Figure 2.4, where σ = 2 > 1
4
, the harvesting is supercritical, satisfying (2.16). It is

shown that for the values of µ = 1.8, 3, populations die out in a very short period of time

te expressed by (2.17), where te = 0.86, 1.09 respectively.

2.2 Slowly Varying Harvesting Model Parameters

We now consider the model (2.3) where r, k and h vary with time. The time variation

of these parameters means that exact solution of this initial value problem is virtually

impossible in general and numerical methods must be used to construct an approximate

solution, with the consequent restriction of r, k, h and ϵ, σ, µ to specific functions and

values respectively.

However, when ϵ is small; that is, the time scale of variation of R, K and H is large

relative to that of the overall population P , the problem (2.3) may be viewed as one

involving two time scales - a fast scale, t, and a slow scale, ϵt. Then, as we will see below,

(2.3) may be solved approximately using a multiscaling method based on these two time

scales, in the limit ϵ → 0.

2.2.1 The Multiscale Harvesting Equation

Since the problem (2.3) involves behaviour on two time scales - slow time, ϵt and normal

time t, we apply a multiscaling analysis to this problem, which follows the lead of earlier

investigations see [28, 26, 40] as discussed in Chapter 1. We propose the generalized
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normal time t0, and a slow time, t1 as defined in (1.14) by

t0 =
1

ϵ
g(t1), and t1 = ϵt (2.18)

respectively, where g(t1) is expected to be a positive valued function on all t1 > 0, to be

determined, with g(0) = 0.

Differentiating (2.18) gives

dt0 = g′(t1) dt

and we ensure one-to-one correspondence between t0 and t by requiring that g′(t1) > 0

on all t1 ≥ 0.

In what follows, we regard p(t, ϵ), the solution of (2.3), as a function p̃(t0, t1, ϵ) of the

variables (2.18), i.e.,

p(t, ϵ) ≡ p̃(t0, t1, ϵ). (2.19)

By applying the chain rule and substituting, we convert the ordinary differential equation

in (2.3) to the multiscaled harvesting equation

g′(t1)D0 p̃+ ϵD1 p̃ = r(t1) p̃

(
1− p̃

k(t1)

)
− σh(t1), (2.20)

where D0 and D1 denote partial derivatives taken with respect to t0 and t1 respectively.

Note that (2.20) is a partial differential equation for the unknown function p̃(t0, t1, ϵ), and

ϵ is displayed explicitly in (2.20) rather than implicitly as in (2.3). This will allow us to

use a perturbation technique to construct an approximate solution of (2.3) that is valid

for all t ≥ 0.

2.3 Perturbation Analysis

We now express p̃(t0, t1, ϵ) as a Poincaré expansion in ϵ

p̃(t0, t1, ϵ) = p̃0(t0, t1) + ϵp̃1(t0, t1) + ϵ2p̃2(t0, t1) + . . . , (2.21)
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and on substituting (2.21) into (2.20), expanding in powers of ϵ and equating coefficients

of like powers of ϵ, obtain a differential equation for the leading order term p̃0 as

g′(t1)D0p̃0 − r(t1) p̃0

(
1− p̃0

k(t1)

)
= σh(t1), (2.22)

and on considering O(ϵ) terms, an analogous equation for p̃1 as

g′(t1)D0p̃1 − r(t1)

(
1− 2 p̃0

k(t1)

)
p̃1 = −D1p̃0. (2.23)

Solving the partial differential equation (2.22) for p̃0 gives

p̃0(t0, t1) =
1
2
k(t1) (1 + η(t1) tanh [θ(t1) (t0 + F (t1))]) (2.24)

where

η(t1) =
√

δ(t1),

δ(t1) = 1− 4σh(t1)

r(t1) k(t1)
,

θ(t1) =
r(t1) η(t1)

2 g′(t1)
(2.25)

and F (t1) is an arbitrary function of t1.

Substituting (2.24) into (2.23) and solving gives a particular solution for p̃1 as

p̃1(t0, t1) = − 1

4 θ(t1) g′(t1)

{
(k(t1) η(t1))

′ + k′(t1) tanh [θ(t1) (t0 + F (t1))]
}

−
[
k′(t1) t0 + k(t1) η(t1)

{
θ′(t1)

(
t20 + 2F (t1) t0

)
+ 2θ(t1)F

′(t1) t0
}]

× 1

4 g′(t1)
sech2 [θ(t1) (t0 + F (t1))] . (2.26)

To this point, we have placed no restriction on the parameters r, k and h. Our only

condition has been that g(t1) and g′(t1) be real and positive on t1 ≥ 0. However, it is

clear that for certain combinations of r, k and h, η(t1) given by (2.25) is imaginary; and

this affects the nature of p̃0, p̃1 as functions of t0; and consequently, that of the expansion

(2.21).
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Therefore, in the next sections, we divide our analysis into two parts; when

δ(t1) > 0 for all t1 ≥ 0; (2.27)

termed subcritical harvesting ; and when

δ(t1) < 0 for all t1 ≥ 0; (2.28)

termed supercritical harvesting.

We now consider the behavior of p̃0 and p̃1, given by (2.24) and (2.26) as functions of

t0.

When the harvesting is subcritical, η(t1) and θ(t1) are real and positive functions of t1

on t1 ≥ 0. Thus, p̃0 tends to a finite limit

k(t1)(1 + η(t1))/2 as t0 → ∞

and the rate of convergence to this limit is exponential, of the form of e−2θ(t1)t0 .

Similarly, as t0 → ∞, p̃1 given by (2.26) tends to the limit

−
{
k′(t1) + (k(t1) η(t1))

′} / {4 θ(t1) g′(t1)} as t0 → ∞.

However, the presence of the t0 and t20 terms in (2.26) means that this convergence is not

exponential (as for p̃0). This convergence to the limit may be made exponential, so that

p̃1 reaches its limit at the same rate as p̃0 by removing these terms. To do this, we set

the coefficients of t0 and t20 in (2.26) separately to zero. This leads to

k′(t1) + 2 k(t1) η(t1) (θ(t1)F (t1))
′ = 0 (2.29)

and

k(t1) η(t1) θ
′(t1) = 0; (2.30)

we have two equations for the two unknown functions F (t1) and g(t1).

When the harvesting is supercritical, η(t1) and θ(t1) are pure imaginary. Then, p̃0 is a
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periodic function of t0. However, the t0 and t20 terms in (2.26) mean that p̃1 is not a

periodic function of t0. If we argue that p̃1 should reflect the periodic nature of p̃0, we

again arrive at the conclusion that the coefficients of the t0 and t20 terms in (2.26) should

again be equated to zero. Thus, we again at arrive (2.29) and (2.30).

In each case, (2.30) leads to the conclusion that θ′(t1) = 0; so that θ(t1) is a constant;

while with this, (2.29) gives

F ′(t1) = −1
2

k′(t1)

k(t1) η(t1) θ(t1)
. (2.31)

We now consider the implications of this for subcritical and supercritical cases.

2.3.1 Subcritical Harvesting

Here, (2.27) applies; and by the arguments above, θ(t1) is a real constant. Thus, choosing

θ(t1) =
1
2
, we have, from (2.25)

g′(t1) = r(t1)χ(t1) where χ(t1) =
√

|δ(t1)|, (2.32)

while from (2.32) and (2.18), we obtain

t0 =
1

ϵ

∫ t1

0

r(s)χ(s) ds, (2.33)

defining the normal time t0.

Similarly, equation (2.31) gives

F (t1) = A(t1) + c where A(t1) = −
∫ t1

0

k′(s)

k(s)χ(s)
ds, (2.34)

and c is an arbitrary constant.

Since our expansion consists of leading order terms and O(ϵ) terms, we suppose that

c in (2.34) has the form c = c0 + ϵc1 + . . ..

Substituting (2.24) and (2.26) back into (2.21) and considering (2.19) give the expan-

sion for p(t, ϵ), the exact solution of (2.3) in powers of ϵ, as

p(t, ϵ) = p0(t, ϵ) + ϵ p1(t, ϵ) +O(ϵ2), (2.35)
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where

p0(t, ϵ) =
1
2
k(t1)

{
1 + χ(t1) tanh

[
1
2
(t0 + A(t1) + c0)

]}
, (2.36)

and

p1(t, ϵ) =
1

2 r(t1)χ(t1)

{
(k(t1)χ(t1))

′ + k′(t1) tanh
[
1
2
(t0 + A(t1) + c0)

]}
+1

4
c1 k(t1)χ(t1) sech

2
[
1
2
(t0 + A(t1) + c0)

]
, (2.37)

where t0 and t1 are defined as functions of t by (2.33) and ϵ t respectively.

Substituting the initial condition from the problem (2.3) into (2.35), using (2.36) and

(2.37), expanding and equating like powers of ϵ gives equations for c0 and c1 which, when

solved respectively, give

c0 = 2arctanh

[
2µ− k(0)

k(0)χ(0)

]
, (2.38)

c1 = 2
k′(0)(2µ − k(0)) + k(0)χ(0) (k(t1)χ(t1))

′∣∣
t1=0

r(0)χ(0) [k2(0)χ2(0)− (2µ− k(0))2]
. (2.39)

From (2.39), c1 is always real. However, as discussed in Section 2.1, c0 given by (2.38)

depends on the values of µ and contains the function arctanh(.), so there are three possi-

bilities:

(1) When ∣∣∣∣2µ− k(0)

k(0)χ(0)

∣∣∣∣ < 1, (2.40)

or

k(0)

2
(1− χ(0)) < µ <

k(0)

2
(1 + χ(0)),

c0 is real valued.

Therefore, the population (as represented by (2.35)) tends to the slowly varying

limiting state

1
2
k(t1) {1 + χ(t1)} − ϵ

{
(k(t1)χ(t1))

′ + k′(t1)

2 r(t1)χ(t1)

}
+O(ϵ2). (2.41)

This case comprises subcritical harvesting with survival. We note that (2.41) is cor-

responded to constant limiting state (2.10) where r(t1) ≡ k(t1) ≡ h(t1) ≡ 1.
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(2) When ∣∣∣∣2µ− k(0)

k(0)χ(0)

∣∣∣∣ > 1, (2.42)

i.e., µ does not satisfy (2.40), there are two possibilities:

(a) when

2µ− k(0)

k(0)χ(0)
> 1, (2.43)

i.e.,

µ > 1
2
k(0) (1 + χ(0)), (2.44)

then c0 given by (2.38) becomes complex; i.e., c0 = c0R − iπ, where c0R and

is expressed by

c0R = 2arccoth

[
2µ− k(0)

k(0)χ(0)

]
, (2.45)

This has the effect of replacing the hyperbolic tangent in the leading term of

(2.35) with a hyperbolic cotangent, with appropriate subsequent replacement in

the O(ϵ) term. i.e.,

tanh[1
2
(t0 + A(t1) + c0R ± iπ)] = coth[1

2
(t0 + A(t1) + c0R)]

and so (2.35) becomes

p(t, ϵ) = p0(t, ϵ) + ϵ p1(t, ϵ) +O(ϵ2), (2.46)

where

p0(t, ϵ) =
1
2
k(t1)

{
1 + χ(t1) coth

[
1
2
(t0 + A(t1) + c0R)

]}
, (2.47)

and

p1(t, ϵ) =
1

2 r(t1)χ(t1)

{
(k(t1)χ(t1))

′ + k′(t1) coth
[
1
2
(t0 + A(t1) + c0R)

]}
+1

4
c1 k(t1)χ(t1) csch

2
[
1
2
(t0 + A(t1) + c0R)

]
(2.48)
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As t0 + A(t1) + c0 → ∞, the hyperbolic cotangent function tends downwards

to 1 while the hyperbolic cosecant function tends to zero. Thus (2.46) tends to

the limiting state (2.41) and again this case comprises subcritical harvesting with

survival.

(b) when

2µ− k(0)

k(0)χ(0)
< −1, (2.49)

i.e.,

0 < µ < 1
2
k(0) (1− χ(0)), (2.50)

c0 is complex such that (2.38) becomes c0 = c0R + iπ where

c0R = 2arccoth

[
2µ− k(0)

k(0)χ(0)

]
, (2.51)

Again, as in a similar discussion in Section 2.1, this has the effect of replacing the

hyperbolic tangent in the leading term of (2.35) with a hyperbolic cotangent, with ap-

propriate subsequent replacement in the O(ϵ) term as (2.46). However, the hyperbolic

cotangent tends to −∞ at some finite t−value. Thus, (2.46) reaches zero in finite time,

signifying an extinction of the population in finite time and this case comprises subcritical

harvesting with extinction.

The inequality (2.50) provides a criterion by which we may determine initial popula-

tions µ for which the population is driven to extinction, even though the harvesting is

subcritical.

2.3.2 Supercritical Harvesting

In this case where δ(t1) satisfies (2.28), η(t1) = i χ(t1) and we choose θ(t1) =
i
2
so that t0

is again defined by (2.33), while

F (t1) = −A(t1) + d, (2.52)
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where d is an arbitrary constant and A(t1) is as defined in (2.34). Again, substituting

d = d0 + ϵd1 + . . . into (2.24) and (2.26) and considering (2.19) give the expansion for

p(t, ϵ), the exact solution of (2.3) in powers of ϵ, as

p(t, ϵ) = p0(t, ϵ) + ϵ p1(t, ϵ) +O(ϵ2) (2.53)

where

p0(t, ϵ) =
1
2
k(t1)

{
1− χ(t1) tan

[
1
2
(t0 − A(t1) + d0)

]}
(2.54)

p1(t, ϵ) =
1

2r(t1)χ(t1)

{
(k(t1)χ(t1))

′ + k′(t1) tan
[
1
2
(t0 − A(t1) + d0)

]}
−1

4
d1 k(t1)χ(t1) sec

2
[
1
2
(t0 − A(t1) + d0)

]
+O(ϵ2). (2.55)

Substituting the initial condition (2.3) into the expansion (2.53), using (2.54) and (2.55),

and equating like powers of ϵ as above, we obtain

d0 = 2arctan

{
k(0)− 2µ

k(0)χ(0)

}
, (2.56)

d1 = −2
k′(0)(k(0)− 2µ) + k(0)χ(0) (k(t1)χ(t1))

′∣∣
t1=0

r(0)χ(0) [k2(0)χ2(0) + (k(0)− 2µ)2]
. (2.57)

where we noted that d0 and d1 are always real valued.

From (2.54), (2.55) as t0 → ∞, the tangent and secant functions tend to ∞, so that

the population dies out in a finite time period.

2.4 Examples

In this section, we show examples of comparisons between the analytic approximations

(2.35), (2.53) and numerical solution of the original initial value problem (2.3) where

the solid curve represents the series approximation, while the dotted line represents the

numerical solution of (2.3). In these, typical values of ϵ are ϵ = 0.02− 0.05, which could

be regarded as typical of time scales relevant to weekly versus annular time variation.
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Because of the complexity of the expansions for the functions r, k and h, as well as

for the two term expansion (2.35), involving p0, p1 obtained from (2.36), (2.37), (2.47),

(2.48), (2.54) and (2.55),we will not display these explicitly, but we will understand that

the appropriate substitution of chosen parameters into has been made.

2.4.1 Subcritical Harvesting with Exponential Carrying Capac-

ity

In this example, we propose that the growth rate, r, increases exponentially and the

carrying capacity, k, varies exponentially with small saturation, while h is constant; that

is,

r(ϵ t) = r0 +∆ eϵ t, k(ϵ t) = k0 + Ωtanh(ϵ t), h(ϵ t) = 1, (2.58)

where all of r0, k0, ∆ and Ω are positive. From (2.25) we have

δ(ϵt) = 1− 4
σ(1)

(r0 +∆ eϵ t)(k0 + Ωtanh(ϵt))
(2.59)

and since r and k are positive monotonically increasing functions for all t ≥ 0, i.e.,

0 < r0 +∆ ≤ r(ϵ t) < ∞, and 0 < k0 ≤ k(ϵ t) < k0 + Ω, and

1− 4
σ

(r0 +∆)k0
< δ(ϵt) < 1, (2.60)

so that δ(t1) > 0 if

0 < σ <
(r0 +∆)k0

4
. (2.61)

For the values of r0, k0, ∆, Ω, and µ used in Figure 2.5 we have

(r0 +∆)(k0)

4
=

(1.02)(1)

4
= 0.255;

and the value σ = 0.05 satisfies (2.61). So, the harvesting is subcritical, and 0.8 < δ(ϵt) <

1 for all t ≥ 0.

Figure 2.5 shows the growth of the population for this choice of r, k and h, when µ = 0.2 (
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Figure 2.5: Subcritical multiscale expansion (black solid) given by (2.35) and

(2.46) with numerical solution (blue dotted) using (2.58) where r0 = k0 =

1, ∆ = 0.02, Ω = 0.05 and µ = 0.2, 1.4, ϵ = 0.02 and σ = 0.05.

which satisfies (2.40) since k(0)
2
(1−χ(0)) = 0.05 < µ < k(0)

2
(1+χ(0)) = 0.95 ) gives a very

good agreement between the approximate expansions (2.36), (2.37) (in terms of hyperbolic

tangent) and the numerical solution of (2.3), as well as with the approximate expansions

(2.47), (2.48)(in terms of hyperbolic cotangent) when µ = 1.4 (that satisfies (2.44) since

µ > k(0)
2
(1+χ(0)) = 0.95). As expected, in both cases the population survives to a slowly

varying limiting state given by (2.41) where δ(ϵt) is given by (2.60) and χ(ϵt) =
√
δ(ϵt).

However, when µ satisfies (2.50), we expect extinction to occur, Figure 2.6 shows this

situation for the same choice of r, k and h as above (and when µ = 0.04 < k(0)
2
(1−χ(0)) =

0.051; i.e., µ satisfies (2.50)). Clearly, the population is doomed to extinction. Again, the

plots demonstrate good agreement between the numerical and asymptotic solutions.
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Figure 2.6: Subcritical multiscale expansion (black solid) given by (2.46) with

numerical solution (dotted) using data of Figure 2.5 with µ = 0.04.

2.4.2 Subcritical Harvesting with Periodic Carrying Capacity

and Harvesting

For a second application, the slowly varying functions h, k are assumed to have the form

k(ϵ t) = 1 + 0.13 cos(ϵ t), h(ϵ t) = 1 + 0.2 tan(ϵ t) and r(ϵ t) = 1, (2.62)

From (2.25), we have

δ(ϵ t) = 1− 4
σ(1 + 0.2 tan(ϵ t))

1 + 0.13 cos(ϵ t)
,

and

δ(ϵt) ≥ 1− 4σ

1.13
for all t ≥ 0;

so that δ(ϵt) > 0 when σ < 0.28. Thus with the choice σ = 0.11 used in Figure 2.7, the

harvesting is subcritical and δ(ϵ t) > 0.38 for all t ≥ 0. .

Also, the value of initial population µ in Figure 2.7 satisfies the inequality (2.40), since

k(0)

2
(1− χ(0)) = 0.125 < µ = 0.8 <

k(0)

2
(1 + χ(0)) = 1.008,
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Figure 2.7: Survival population with subcritical harvesting given by (2.35)

(in terms of hyperbolic tangent) involving (2.62) with σ = 0.11, ϵ = 0.03 and

µ = 0.8.

while in Figure 2.8 µ = 1.2 > 1.008 which satisfies (2.44).

Figures 2.7-2.8 show the variation of the surviving populations for k, h defined by

(2.62) where µ = 0.8, 1.2 satisfying (2.40), (2.44) respectively. The agreement between

the multiscale approximation (solid curve) and numerical solution (dotted curve) is clearly

very good.

However, in Figure 2.9 the population becomes extinct, since µ = 0.1 satisfies (2.50),

where µ = 0.1 < k(0)
2
(1 − χ(0)) = 0.125. Again the graphs show a good agreement

between analytic approximation and the numerical solution.
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Figure 2.8: Survival with subcritical harvesting given by (2.46) (in terms of

hyperbolic cotangent) with the same data as Figure 2.7, but µ = 1.2.

Figure 2.9: Subcritical harvesting with extinction given by (2.46) (in terms of

hyperbolic cotangent) using same data as Figure 2.7, but µ = 0.1.
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Figure 2.10: Evolution of the population subject to subcritical harvesting with

survival to a slowly varying state given by (2.35) using (2.63) where σ = 0.02,

µ = 0.032 and ϵ = 0.05.

2.4.3 Subcritical Harvesting with Slowly Varying Periodic Growth

Rate, Carrying Capacity and Harvesting

Here, we consider r, k and h to be periodically slowly varying as follow

r(ϵt) = 1 + 0.1 sin(ϵt), k(ϵt) = 1 + 0.08 sin(ϵt), h(ϵt) = 1 + 0.05 sin(ϵt). (2.63)

Here the harvesting is subcritical since

δ(ϵt) = 1− 4
σ(1 + 0.05 sin(ϵt))

(1 + 0.1 sin(ϵt))(1 + 0.08 sin(ϵt))

> 1− 4σ for all t ≥ 0

and with the choice σ = 0.02 used in Figure 2.10, thus δ(ϵt) > 0.92.

Figure 2.10 shows population evolution under subcritical harvesting from an initial

µ = 0.032 for these r, k and h. Here, µ = 0.032 > 1
2
k(0) (1 − χ(0)) ≈ 0.02, , satisfying

the criterion (2.44).
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Figure 2.11: Evolution of the population subject to the subcritical harvesting

given by (2.46) of data of Figure 2.10, but now with starting population µ =

0.012 satisfies (2.50). The dashed curve shows 10δ , where δ is the indicator

from (2.25)
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Figure 2.12: Evolution of the population given by (2.35) for the time vary-

ing data of Figure 2.10, but with σ = 0.02, ϵ = 0.05 and various µ =

0.032, 0.5, 0.8, 2.0

In Figure 2.11, the same r, k, h and σ apply, but now the starting population, µ ≈ 0.02

is so small that the population declines to zero.

In this case, µ = 0.012 < 1
2
k(0) (1− χ(0)) ≈ 0.02; that is, the initial population sat-

isfies the criterion (2.50) and extinction occurs, even though the harvesting is subcritical.

Figure 2.12 shows population evolution under subcritical harvesting for the same r, k,

h and σ, ϵ = 0.05 and a range of µ values satisfying (2.44). In each case, there is a rapid

initial transition region (where t0 dominates) to a periodic limiting state where t1 variation

dominates. The agreement between approximation and numerical solution is excellent,

implying that accuracy of the approximations is independent of initial conditions.

Figure 2.13 shows population evolution under subcritical harvesting from an initial

µ = 0.032 for periodic slowly varying r, k and h and a range of ϵ values. In each case,

the agreement between approximation and numerical solution is very good, although, for
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Figure 2.13: Evolution of the population subject to subcritical harvesting with survival

to a slowly varying state, for data used in Figure 2.10, where ϵ = 0.05, 0.1, 0.2, 0.5 in clockwise

order starting from the top left corner.
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the largest value of ϵ, where ϵ = 0.5 (which might not be regarded as small), there is a

noticeable discrepancy.

2.4.4 Supercritical Harvesting with Slowly Varying Periodic Growth

Rate, Carrying Capacity and Harvesting

Figure 2.14 shows results for supercritical harvesting for periodic slowly varying r, k and

h where

r(ϵt) = 1 + 0.03 sin(ϵt), k(ϵt) = 1 + 0.03 sin(ϵt), h(ϵt) = 1 + 0.04 sin(ϵt). (2.64)

For this data,

δ(ϵ t) = 1− 4σ(1 + 0.04 sin(ϵt))

(1 + 0.03 sin(ϵt))2

< 1− 0.96σ

(1.03)2

< 1− 3.92σ.

Thus in this case δ(ϵ t) < 0 when σ > 0.25. So, for the value of σ = 0.5 used in Figure

figure4, the harvesting is supercritical where δ(ϵ t) < −0.96.

Thus, for σ = 0.5, as expected, the population declines from an initial µ = 1 to zero at

t1 ≈ 3 (or t ≈ 60).

This last result may also be obtained by replacing t0 by (2.33) in (2.53), setting the

resulting first two terms of (2.53) to zero and numerically solving the resulting transcen-

dental equation in t1.

2.5 Discussion

The expansions (2.35), (2.46) and (2.53) are two-term explicit easily applied approxi-

mations to the evolving population p(t, ϵ) in the subcritical and supercritical harvesting
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Figure 2.14: Evolution of the population subject to supercritical harvesting

given by (2.53) with extinction population where µ = 1.0, σ = 0.5, and ϵ = 0.05

cases respectively. They apply for arbitrarily slowly varying functions r, k and h and

parameters values ϵ, σ and µ, providing ϵ is small.

However, some simple restrictions on r, k and h are required for their construction. It

seems sufficient that r, k and h be continuously differentiable on the domain of definition

of the expansion. For (2.35) (subcritical survival) this is t ≥ 0, while for (2.46) (subcritical

extinction) and (2.53) (supercritical extinction) it will be 0 ≤ t ≤ t∗, where t∗ is where the

population reaches zero, since from extinction onwards, the physical population problem

is no longer relevant.

Note that these two term expansions all contain terms at the O(ϵ) level for which χ(t1)

is in the denominator. Thus, at points where χ(t1) = 0 , these terms are undefined and so

too are these expansions. More generally, at points where χ(t1) = O(ϵ) , the second terms

in these expansions become comparable with the leading order ones; i.e., the expansions

become disordered, and fail as representations of the population. In particular, such dis-
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ordering occurs in the neighbourhood of points where there is a change of harvesting from

subcritical to supercritical or vice versa. In such neighbourhoods, the solution structure

changes and so too do the expansions representing such solutions. Such transition regions

will be analysed later in Chapter 4.

It must also be recognised that the process by which (2.35), (2.46) and (2.53) are

constructed is purely formal, and is based on the assumption that the problem (2.3) has a

solution p(t, ϵ) that is represented by these expansions where ϵ is sufficiently small. Thus,

while the comparison with numerical solutions in Sections 2.4.1− 4 are encouraging, they

do not prove the validity of these expansions, or the existence of a solution p(t, ϵ) behind

them, This matter will be considered in Chapter 3.

The calculations of Sections 2.2, 2.3 have been published in Idlango et al [40].
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Chapter 3

Existence and Uniqueness for the

Harvesting Model

3.1 Introduction

The harvesting model, as considered in Chapter 2 takes a dimensionless form as the initial

value problem for p(t, ϵ);

dp(t, ϵ)

dt
= r(ϵt)p(t, ϵ)(1− p(t, ϵ)

k(ϵt)
)− σh(ϵt), p(0, ϵ) = µ. (3.1)

In that Chapter, multiscaling methods were used to obtain explicit approximations to the

solution of the problem (3.1) for small positive ϵ, under appropriate conditions.

While this process was successful, and yielded expressions that agreed very well with

the results of numerical solutions, the approach was purely formal, and rested on the

assumption that the initial value problem (3.1) had a solution p(t, ϵ) that was unique on

t ≥ 0 and which was approximated well by the multiscale approximation as ϵ → 0.

In the present Chapter, we justify this formal process by proving rigorously that
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• the problem (3.1) has a solution p(t, ϵ) (that is expressed by (2.35) or

(2.46) and (2.53))

• this solution is unique, and

• the estimate p(t, ϵ)− p0(t, ϵ) = O(ϵ)

holds uniformly on an appropriate set of t-values, for all ϵ small enough, in a sense to be

defined. Here, p0(t, ϵ) is the leading order approximation obtained in Chapter 2.

We note, from Chapter 2, that this approximation takes different forms in three distinct

cases:

(i) subcritical harvesting with survival as discussed in Section 2.3.1 ,

(ii) subcritical harvesting with extinction as discussed in Section 2.3.1,

(iii) supercritical harvesting as detailed in Section 2.3.2.

We will see in the following sections that the details of the existence of the solution

p(t, ϵ) depends heavily on the properties of p0(t, ϵ) displayed in each of these three forms

We begin by making the following basic assumptions about the functions r, k and h

in (3.1):

• A1: The functions r(ϵt), k(ϵt) and h(ϵt) are continuous and continuously differen-

tiable functions of t for all t ≥ 0 and all ϵ in a neighbourhood of zero.

Note: in what follows, certain estimates will be found to hold for all ϵ small enough;

that is, for all ϵ in 0 < ϵ ≤ ϵ0, where ϵ0 is some suitably small positive value, that

will change with the context. We will indicate this property with the phrase for all

ϵ in a neighbourhood of zero, implying that such an ϵ0 exists to make the estimate

uniform in that interval of ϵ values.

• A2: There exist positive numbers α1, α2, β1, β2, β3, γ1 and γ2 which are indepen-
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dent of ϵ such that

α1 ≤ r(ϵt) ≤ α2

β1 ≤ k(ϵt) ≤ β2, |k′
(ϵt)| ≤ β3

γ1 ≤ h(ϵt) ≤ γ2, (3.2)

for all t ≥ 0 and ϵ in a neighbourhood of zero.

• A3: The function h(ϵt) satisfies the condition [(2.27), or (2.28)] of the subcritical

harvesting or supercritical harvesting case respectively, i.e.,

h(ϵt) < r(ϵt) k(ϵt)/4σ or h(ϵt) > r(ϵt) k(ϵt)/4σ

on t ≥ 0 and ϵ in a neighbourhood of zero.

From (2.25), we have

δ(ϵt) = 1− 4σh(ϵt)

r(ϵt) k(ϵt)
,

so the above is equivalent to assuming the existence of positive constants ρ1, ρ2

independent of ϵ such that either

δ(ϵt) ≥ ρ1 > 0 or δ(ϵt) ≤ − ρ2 < 0 (3.3)

for all t ≥ 0 and ϵ in a neighbourhood of zero, in the subcritical harvesting or

supercritical harvesting cases, respectively.

We note that the hypotheses above means that χ(ϵt) =
√

|δ(ϵt)| satisfies

0 < ρ3 ≤ χ(ϵt) ≤ ρ4,

for all t ≥ 0 and ϵ in a neighbourhood of zero, for positive constants ρ3, ρ4 indepen-

dent of ϵ.
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3.2 Reformulation of the Initial Value Problem as an

Integral Equation

We now rewrite the initial value problem (3.1) for p(t, ϵ), in terms of a new function u(t, ϵ)

that represents the difference between p(t, ϵ) and p0(t, ϵ), the leading order of approximate

solution of (3.1); that is,

u(t, ϵ) = p(t, ϵ)− p0(t, ϵ). (3.4)

By substituting (3.4) into (3.1), we obtain

du

dt
+ β(t, ϵ)u = R(p0(t, ϵ)) + γ(u(t, ϵ)), u(0, ϵ) = 0, (3.5)

where

β(t, ϵ) = r(ϵt)(
2p0(t, ϵ)

k(ϵt)
− 1), (3.6)

R(p0(t, ϵ)) = r(ϵt)p0(t, ϵ)(1−
p0(t, ϵ)

k(ϵt)
)− σh(ϵt)− dp0(t, ϵ)

dt
, (3.7)

γ(u(t, ϵ)) = − r(ϵt)

k(ϵt)
u2(t, ϵ). (3.8)

where R(p0(t, ϵ)) is termed the residual.

Multiplying both sides of (3.5) by the integrating factor

I = eω(t,ϵ), where ω(t, ϵ) =

∫ ϵt

0

β(s, ϵ)ds (3.9)

converts the differential equation in the initial value problem (3.5) to

d

dt
(eω(t,ϵ)u) = eω(t,ϵ) [R(p0(t, ϵ)) + γ(u(t, ϵ))] .

Integrating both sides from 0 to t and applying the condition u(0, ϵ) = 0 gives

u(t, ϵ) = e−ω(t,ϵ)

∫ t

0

eω(s,ϵ)R(p0(s, ϵ))ds+ e−ω(t,ϵ)

∫ t

0

eω(s,ϵ) γ(u(s, ϵ))ds. (3.10)

The equation (3.10) is a nonlinear integral equation, that is equivalent to the initial value

problem (3.5).
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For, clearly, as we have constructed above, (3.5) implies (3.10).

Conversely, if u(t, ϵ) is a continuous solution of (3.10), it is differentiable, and evaluation

at t = 0 shows that u(t, ϵ) meets the initial condition of (3.5). Moreover, differentiating

both sides of (3.10) gives

d

dt
u(t, ϵ) = R(p0(t, ϵ)) + γ(u(t, ϵ))− ω′(t, ϵ) eω(t,ϵ)

[∫ t

0

eω(s,ϵ) R(p0(s, ϵ))ds

+ e−ω(t,ϵ)

∫ t

0

eω(s,ϵ) γ(u(s, ϵ))ds

]
(3.11)

and then substituting (3.10) into the third term of the right hand side of (3.11) gives the

differential equation of (3.5).

We may express equation (3.10) symbolically in the form

u(t, ϵ) = T R(p0(t, ϵ) + Tγ(u(t, ϵ), (3.12)

where the map T is defined by

Tf(t, ϵ) = e−ω(t,ϵ)

∫ t

0

eω(s,ϵ)f(s, ϵ)ds. (3.13)

Clearly, T is linear, and is defined on the set of functions continuous on any subset of

t ≥ 0 for each ϵ in a neighbourhood of zero. Further, under assumption A1, T maps

continuous functions of t into continuous functions of t.

Note, however, that due to the quadratic nonlinearity in u of γ, (3.12) is a nonlinear

operator equation.

3.3 Existence of a Unique Solution

In this section, we show the existence of a solution u(t, ϵ) of the operator equation (3.12)

in an appropriate subspace, X, of the continuous functions of t defined on t ≥ 0 or some

appropriate subset.

We further show that this u(t, ϵ) is unique and satisfies the estimate

u(t, ϵ) = O(ϵ) (3.14)
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uniformly on an interval of t values to be defined. This implies that p(t, ϵ) exists as a

unique solution of the problem (3.1) and satisfies the condition

p(t, ϵ)− p0(t, ϵ) = O(ϵ), (3.15)

on t ≥ 0 or some appropriate subset.

Firstly, we consider the set X of functions f(t, ϵ) which are bounded continuous func-

tion of t on an interval [0, a], for each ϵ in a neighbourhood of zero. This set is a Banach

space with the norm

∥f∥ = sup
t∈[0,a]

|f(t, ϵ)|. (3.16)

Note that ∥f∥ depends on ϵ.

(For basic properties of Banach spaces, see [9], Section1.3).

Then, the nonlinear equation (3.12) is a nonlinear equation on X.

Further, if we define the nonlinear map N : u → ũ on X by

ũ(t, ϵ) = N u(t, ϵ) = TR(p0(t, ϵ)) + Tγ(u(t, ϵ)) (3.17)

for all ϵ in a neighbourhood of zero, then N maps the space X into itself.

Since the properties of the nonlinear map N are governed by the properties of the linear

map T , we make the following assumptions A4,A5 about the map T :

• A4: There exists c > 0 and independent of ϵ for all ϵ in a neighbourhood of zero,

such that for any f(t, ϵ) in X,

|Tf(t, ϵ)| ≤ c∥f∥, (3.18)

for all t ∈ [0, a].

• A5: There exist a positive constant b independent of ϵ as above, such that

∥TR(p0(t, ϵ))∥ ≤ b ϵ (3.19)

for all t ∈ [0, a].
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In terms of N , equation (3.12) becomes

u = Nu, (3.20)

i.e., the solution of (3.12) is a fixed point in X of the nonlinear map N . We thus seek to

show the existence of this fixed point.

To prove this we will use the following Theorem :

Theorem (Contractive Mapping Theorem[9, 14]). Let S(x̄, ρ) be the ball of radius ρ and

centre x̄ in a Banach space X. Suppose the map A maps S into itself and satisfies the

condition that

∥A(x)− A(y)∥ ≤ λ∥x− y∥ for all x, y ∈ S

where λ is a positive constant less than 1; i.e. A is contractive on S. Then A has one

and only one fixed point in S(x̄, ρ).

We begin by showing that for ϵ in a neighbourhood of zero, N maps the ball

B = {u : ∥u∥ ≤ mϵ} (3.21)

in the space X into itself for some m > 0 independent of ϵ.

From (3.17), we have

∥ũ(t, ϵ)∥ = ∥TR(p0(t, ϵ)) + Tγ(u(t, ϵ))∥

≤ ∥TR(p0(t, ϵ))∥+ ∥Tγ(u(t, ϵ))∥ (3.22)

and from A4 and A5 we get

∥ũ(t, ϵ)∥ ≤ b ϵ+ c ∥γ(u(t, ϵ))∥. (3.23)

Also,

∥γ(u(t, ϵ))∥ = ∥ − r(ϵt)

k(ϵt)
u2(t, ϵ)∥

≤ ∥ − r(ϵt)

k(ϵt)
∥ ∥u2∥

≤ d∥u∥2 (3.24)
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Figure 3.1: Graphical representation.

using assumption A1, where d is a positive finite number independent of ϵ.

For any u ∈ B, (3.23) gives, using (3.21) and (3.24)

∥ũ(t, ϵ)∥ ≤ b ϵ + m2ϵ2

so, ũ will be in the ball B if

b ϵ+m2 d ϵ2 ≤ mϵ; (3.25)

i.e.,

b+m2 d ϵ ≤ m. (3.26)

As it is shown in Figure 3.1, for small enough ϵ there will be a crossing point m̄ (finite

and positive) such that m > m̄ for some finite choice of m independent of ϵ. Thus, N

maps the ball B into itself, for all ϵ in a neighbourhood of zero.

We now show that for small enough ϵ, N is a contraction on the ball (3.21).

First, suppose u1, u2 lie in B with images under N ũ1, ũ2; i.e., from (3.17) we have

ũ1 = Nu1 = TR(p0(t, ϵ)) + Tγ(u1(t, ϵ)), (3.27)

and

ũ2 = Nu2 = TR(p0(t, ϵ)) + Tγ(u2(t, ϵ)). (3.28)
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Then

ũ2 − ũ1 = [TR(p0(t, ϵ)) + Tγ(u2(t, ϵ))]− [TR(p0(t, ϵ)) + Tγ(u1(t, ϵ))]

= T (γ(u2(t, ϵ)) − γ(u1(t, ϵ))) (3.29)

so that,

∥ũ2 − ũ1∥ ≤ ∥T∥ ∥γ(u2)− γ(u1)∥, (3.30)

from A1 and (3.22).

Then,

∥ũ2 − ũ1∥ ≤ c ∥ − r(ϵt)

k(ϵt)
u2
2 + (− r(ϵt)

k(ϵt)
)u2

1∥

∥ũ2 − ũ1∥ ≤ d c ∥u2
2 − u2

1∥

≤ d∗ ∥(u2 − u1)(u2 + u1)∥

= d∗ ∥u2(u2 − u1) + u1(u2 − u1)∥

≤ d∗ ∥u2 − u1∥ [∥u2∥+ ∥u1∥] (3.31)

But u2, u1 ∈ B, so ∥u2∥, ∥u1∥ ≤ mϵ and so

∥ũ2 − ũ1∥ ≤ 2 d∗ mϵ∥u2 − u1∥. (3.32)

Thus for ϵ positive and small enough, the map N : u → ũ is a contractive map on the

ball B, i.e.,

∥Nu2 −Nu1∥ ≤ λ ∥u2 − u1∥, (3.33)

where λ = 2 d∗mϵ, with 0 < λ < 1 for all ϵ in a neighbourhood of zero.

So, N satisfies the conditions of the Contractive Mapping Theorem and N has a

unique fixed point in the ball B. This means that the integral equation (3.10) has a

unique solution u(t, ϵ) satisfying (3.14).

Thus, there is a unique solution p(t, ϵ) of the initial value problem (3.1) and the condition

(3.15), holds, i.e.,

p(t, ϵ)− p0(t, ϵ) = O(ϵ)
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for all t ∈ [0, a].

Moreover, (3.5) implies that, for the solution u(t, ϵ) of (3.5),

∥u′(t, ϵ)∥ ≤ |β(t, ϵ)|∥u∥+ |R(p0(t, ϵ))|+ | r(ϵt)
k(ϵt)

|∥u∥2

= O(ϵ),

since ∥u∥ = O(ϵ), then

p′(t, ϵ)− p′0(t, ϵ) = O(ϵ)

i.e., for small enough ϵ it is not only true that p(t, ϵ) is a unique solution close to the

leading approximation p0(t, ϵ), but also the derivative of p(t, ϵ), p′(t, ϵ) is close to the

derivative of p0(t, ϵ), p′0(t, ϵ). This closeness improves as ϵ → 0.

This proof is based on the Assumptions A4, A5 holding. The validity of these depend,

in turn, on the properties of the linear operator T and the choice of the space X = C[0, a];

i.e., the choice of a. These, in turn, depend on the properties of the leading approximation

p0(t, ϵ), as constructed in Chapter 2. In the following sections, we will demonstrate how

these properties, leave as is rise to the three forms of limiting behaviour described in

Section 3.1, enable choices of X ensuring that the Assumptions A4 and A5 hold.

3.4 Existence for Subcritical Harvesting: Surviving

Case

When the harvesting is subcritical and either (2.35) or (2.46) holds, the leading order

term of the expansion for the solution of (3.1), p0(t, ϵ), as given by (2.36) or (2.47) tends

to a finite limit as t → ∞. i.e., the first leading term; p0(t, ϵ) is bounded, since from

assumptions A1−A3 where 0 < χ(ϵt) ≤ 1, p0(t, ϵ) given by (2.36), (2.47),

p0(t, ϵ) →
1

2
k(ϵt)(1 + χ(ϵt)) as t → ∞
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or

2p0
k(ϵt)

− 1 → χ(ϵt) (3.34)

and so,

0 < p0(t, ϵ) < β2 < ∞, (3.35)

where β2 > 0 and is independent of ϵ, for all ϵ in a neighbourhood of zero.

In this case, we choose our Banach space X of Section 3.3 to be C[0,∞), i.e., we

choose a = ∞. We show that, with this choice, the assumptions A4 and A5 hold for all

f(t, ϵ) ∈ X, where

∥f∥ = sup
t∈[0,∞)

|f(t, ϵ)|. (3.36)

3.4.1 Assumption A4 is Valid

In order to demonstrate the validity of Assumption A4 , we require the following Lemma:

Lemma 3.4.1.1. For all ϵ in a neighbourhood of zero, there exist finite δ > 0 and t̄ ≥ 0,

independent of ϵ, such that β(t, ϵ) ≥ δ for all 0 ≤ t̄ ≤ t < ∞.

We first show that this Lemma ensures that the map T given by (3.13) satisfies the

assumption A4, and delay the proof of Lemma 3.4.1.1 until later.

Firstly, we assume t̄ > 0. From (3.13) we can break up the integral into two parts, so

that

Tf(t, ϵ) = e−ω(t,ϵ)

∫ t̄

0

eω(s,ϵ)f(s, ϵ)ds + e−ω(t,ϵ)

∫ t

t̄

eω(s,ϵ)f(s, ϵ)ds, (3.37)

where t̄ 9 ∞ as ϵ → 0.

(a). If t ∈ [0, t̄] then

|Tf(t, ϵ)| ≤ e−ω(t,ϵ)

∫ t̄

0

|eω(s,ϵ)| |f(s, ϵ)|ds, (3.38)

from Cauchy-Schwarz inequality

|Tf(t, ϵ)| ≤ sup
t∈[0,t̄]

e−ω(t,ϵ)

∫ t̄

0

|eω(s,ϵ)|ds ∥f∥ (3.39)
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but, sup
t∈[0,t̄]

e−ω(t,ϵ)

∫ t̄

0

|eω(s,ϵ)|ds has finite number given by Ā, independent of ϵ, so

that

|Tf(t, ϵ)| ≤ Ā ∥f∥ for all 0 < t ≤ t̄. (3.40)

(b). If t ∈ [t̄,∞] then taking differentials in (3.9), we get

dω(t, ϵ) = β(t, ϵ)dt;

and by changing the limits of integration in the definite integral on [t̄, t] the map T in

(3.37) becomes

Tf(t, ϵ) = e−ω(t,ϵ)

∫ t̄

0

eω(s,ϵ)f(s, ϵ)ds

+ e−ω(t,ϵ)

∫ ω(t,ϵ)

ω(t̄,ϵ)

eω(s(ω),ϵ)f(s(ω), ϵ)
dω

β(s(ω), ϵ)
. (3.41)

Thus

|Tf(t, ϵ)| ≤ |e−ω(t,ϵ)| |
∫ t̄

0

eω(s,ϵ)f(s, ϵ)ds|

+ |e−ω(t,ϵ)| |
∫ ω(t,ϵ)

ω(t̄,ϵ)

eω(s(ω),ϵ)f(s(ω), ϵ)
dω

β(s(ω), ϵ)
|

≤ |e−ω(t,ϵ)|
∫ t̄

0

eω(s,ϵ)|f(s, ϵ)|ds

+ |e−ω(t,ϵ)| |
∫ ω(t,ϵ)

ω(t̄,ϵ)

eω(s(ω),ϵ)| 1

β(s(ω), ϵ)
||f(s(ω), ϵ)|dω

(3.42)

From Lemma 3.4.1.1, then there is δ > 0 such that β(t(ω), ϵ) ≥ δ for small positive ϵ, and
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so

|Tf(t, ϵ)| ≤ e−ω(t,ϵ)

∫ t̄

0

eω(s,ϵ)ds∥f∥

+
1

δ
e−ω(t,ϵ)

∫ ω(t,ϵ)

ω(t̄,ϵ)

eω(s(ω),ϵ)dω ∥f∥

≤ e−ω(t,ϵ)

∫ t̄

0

eω(s,ϵ)ds∥f∥

+
1

δ
e−ω(t,ϵ)

[
eω(t,ϵ) − eω(t̄,ϵ)

]
∥f∥

= e−ω(t,ϵ)

∫ t̄

0

eω(s,ϵ)ds∥f∥+ 1

δ

(
1− eω(t̄,ϵ)−ω(t,ϵ)

)
∥f∥ (3.43)

and since the term eω(t̄,ϵ)−ω(t,ϵ) has finite limit, so (3.43) becomes

|Tf(t, ϵ)| ≤ e−ω(t,ϵ)

∫ t̄

0

eω(s,ϵ)ds∥f∥+ α∥f∥ (3.44)

where α is a positive constant independent of ϵ.

Now we can reformulate (3.9) as

ω(t, ϵ) =

∫ t̄

0

β(s, ϵ)ds+

∫ ϵt

t̄

β(s, ϵ)ds

where
∫ t̄

0
β(s, ϵ)ds has finite value l1 is independent of ϵ, and so

e−ω(t,ϵ) = l1 e
−

∫ ϵt
t̄ β(s,ϵ)ds, (3.45)

Substituting (3.45) into (3.44) gives

|Tf(t, ϵ)| ≤ L

∫ t̄

0

eω(s,ϵ)ds∥f∥+ α∥f∥. (3.46)

where L is finite value independent of ϵ. From (3.40) we have

|Tf(t, ϵ)| ≤ Ā∥f∥+ α∥f∥

≤ c∥f∥, (3.47)

where c = α+ Ā for all c > 0, independent of ϵ for all ϵ in a nighbourhood of zero.
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Thus, (a) and (b) show that for all t ∈ [0,∞) T is bounded i.e.,

∥T (f(t, ϵ))∥ ≤ c∥f∥,

and Assumption A4 is valid,

Note: when t̄ = 0, i.e., when β(t, ϵ) is strictly positive on 0 ≤ t < ∞, the proof

follows as above. However, the first integral term of (3.37) is absent.

We now turn to the proof of the Lemma 3.4.1.1.

Proof of Lemma 3.4.1.1

Since there is no conditions on β(t, ϵ) as defined in (3.6) then it could be a positive or

negative valued function, or have at least one zero on t ≥ 0.

Substituting t = 0 into (3.6) gives

β(0, ϵ) = r(0)(
2µ

k(0)
− 1), (3.48)

and noting (2.36) and (2.38), where the initial population µ satisfies the condition

k(0)

2
(1− χ(0)) < µ <

k(0)

2
(1 + χ(0)).

we see, from (3.48), that β(0, ϵ) will be positive if

k(0)

2
< µ <

k(0)

2
(1 + χ(0))

and negative if

k(0)

2
(1− χ(0)) < µ <

k(0)

2
.

Similarly, from (2.44) where µ satisfies the condition

µ >
k(0)

2
(1 + χ(0)),

β(0, ϵ) is always positive.

Now, from assumption A1, (3.6) and (3.34), as t → ∞

β(t, ϵ) → r(ϵ t)χ(ϵ t) > 0,
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so that the function β(t, ϵ) may start with a positive or negative value, but for large times

t will tend to a positive limiting value.

Now, consider the case where β(t, ϵ) has at least one zero on 0 < t < ∞. Since, from

the definition, (3.6), β(t, ϵ) contains p0(t, ϵ), we divide our analysis into two cases:

• p0(t, ϵ) defined as in (2.36):

Let us suppose that t∗ is the zero defined above, then from (3.6) we get

r(ϵt∗)(
2 p0(t

∗, ϵ)

k(ϵt∗)
− 1) = 0. (3.49)

Replacing t with t∗ in (2.36) and substituting in (3.49) gives

r(ϵt∗)χ(ϵt∗) tanh(
1

2
(t0(t

∗) + A(ϵt∗) + c0)) = 0,

and from A1−A3,

tanh

[
1

2
(t0(t

∗) + A(ϵt∗) + c0)

]
= 0, (3.50)

which implies

t0(t
∗) + A(ϵt∗) + c0 = 0, (3.51)

where c0 is a constant value defined in (2.38).

The definition of t0 (2.33) and assumptions A1−A3 give

t0(t
∗) ≥ αt∗, (3.52)

where α > 0 is independent of small enough ϵ. Further, from (2.34)

A(ϵt∗) = −
∫ ϵt∗

0

k
′
(s∗)

k(s∗)χ(s∗)
ds∗ ≥ −ϵ ωt∗, (3.53)

where ω > 0 and is independent of small positive ϵ. Thus,

1
2
[t0(t

∗) + A(ϵt∗) + c0] ≥ 1
2
[(α− ϵ ω)t∗ + c0]

≥ 1
4
(αt∗ + c0) (3.54)
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for ϵ small enough.

Thus, we have

1
4
(αt∗ + c0) ≤ 1

2
[t0(t

∗) + A(ϵt∗) + c0] (3.55)

and

tanh[1
4
(αt∗ + c0)] ≤ tanh[1

2
(t0(t

∗) + A(ϵt∗) + c0)]. (3.56)

Thus, if t∗ → ∞ as ϵ → 0, we must have tanh(t0(t
∗) + A(ϵt∗) + c0) ̸= 0 i.e., there

is no zero of tanh
[
1
2
(t0(t

∗) + A(ϵt∗) + c0)
]
that will tend to ∞ as ϵ → 0; i.e., any

t∗ (independent of small ϵ) determined by (3.51) is bounded for ϵ small enough.

Thus, there is a finite time such that t̄ is independent of ϵ where t̄ > t∗ such that

β(t, ϵ) ≥ δ where δ > 0 (independent of ϵ) for small positive ϵ in a nighbourhood

of zero. i.e., there exists a finite t̄ independent of ϵ that makes β(t, ϵ) is always

positive for all t ≥ t̄.

• p0(t, ϵ) defined as in (2.37):

Again, let assume that t∗ is the zero of (3.6) and using (2.37), we have

r(ϵt∗)χ(ϵt∗) coth(
1

2
(t0(t

∗) + A(ϵt∗) + c0R)) = 0, (3.57)

where c0R > 0.

Again, from (3.52) and (3.53), for small ϵ we get

t0(t
∗) + A(ϵt∗) + c0R > 1

4
(αt∗ + c0R) > 0.

Thus

coth(
1

2
(t0(t

∗) + A(ϵt∗) + c0R)) > 0

and so the property (3.57) is not hold. This is means there is a finite time such

t̄ > t∗ independent of ϵ, so that β(t, ϵ) ̸= 0. Thus, there exists δ > 0 (independent

of small enough ϵ) such that β(t, ϵ) ≥ δ for all t ≥ t̄.
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3.4.2 Assumption A5 is Valid

• Firstly, we consider the case where p0(t, ϵ) has the form (2.36).

By (3.7) and (2.36) we have

dp0(t, ϵ)

dt
=

ϵ

2
{k′(ϵt) + (k(ϵt)χ(ϵt))′ tanh[

1

2
(t0(ϵt) + A(ϵt) + c0)]

+k(ϵ t)χ(ϵ t)

[
1− tanh2(

1

2
(t0 + A(ϵt) + c0))

]
(
t′0 + A′(ϵt)

2
)}, (3.58)

where from (2.33),

t′0 =
1

ϵ
r(ϵt)χ(ϵt)

and from (2.34)

A′(ϵt) =
k′(ϵ t)

k(ϵ t)χ(ϵ t)
.

Substituting (2.36) and (3.58) into (3.22) gives

R(p0(t, ϵ)) =
1
4
r(ϵ t) k(ϵ t)− σ h(ϵ t)

−1
4
r(ϵ t)k(ϵ t)χ2(ϵ t) +

ϵ

4
k′(ϵ t)

[
1− tanh2[1

2
(t0 + A(ϵt) + c0)]

]
− ϵ

2
{k′(ϵt) + (k(ϵt)χ(ϵt))′ tanh[

1

2
(t0(ϵt) + A(ϵt) + c0)]}. (3.59)

On using (2.25) and (2.32), we find that the leading order terms cancel, leaving the

O(ϵ) terms, so that (3.59) gives

R(p0(t, ϵ)) =
ϵ

2
{k

′(ϵt)

2
(1− tanh2(

1

2
(t0 + A(ϵt) + c0))

− (k(t)χ(t))′ tanh[
1

2
(t0(ϵt) + A(ϵt) + c0)])}. (3.60)

Using the assumptions A1-A3 and fact that −1 ≤ tanh(..) ≤ 1, we see that there

exists a positive number λ independent of ϵ for all ϵ in a nighbourhood of zero, such

that

∥R(p0(t, ϵ))∥ ≤ λ ϵ. (3.61)

Thus,

∥TR(p0(t, ϵ))∥ ≤ ∥T∥ ∥R(p0(t, ϵ))∥, (3.62)
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and from A4 and (3.61), for all 0 ≤ t < ∞ we have

∥TR(p0(t, ϵ))∥ ≤ b ϵ, b = cλ (3.63)

for some positive b independent of ϵ for all ϵ in a nighbourhood of zero.

• Now, we consider the case where p0(t, ϵ) has the form (2.47).

From (3.7) and using (2.47), we have

R(p0(t, ϵ)) =
1
4
r(ϵ t) k(ϵ t)− σ h(ϵ t)− 1

4
r(ϵ t)k(ϵ t)χ2(ϵ t) coth2[1

2
(t0 + A(ϵt) + c0)]

+
ϵ

2
k(ϵ t)χ(ϵt)

(
t′0 + A′(ϵt)

2

)(
coth2[1

2
(t0 + A(ϵt) + c0)]− 1

)
− ϵ

2
(k(ϵt)χ(ϵt))′ coth[

1

2
(t0(ϵt) + A(ϵt) + c0)]. (3.64)

Again with the same steps as above, we obtain

R(p̃0(t, ϵ)) =
ϵ

2
{k

′(ϵt)

2
(coth2(

1

2
(t0 + A(ϵt) + c0)− 1)

− (k(t)χ(t))′ coth[
1

2
(t0(ϵt) + A(ϵt) + c0)])}. (3.65)

Under the assumptions A1-A3 and the properties that either coth(..) > 1 or coth(..) <

−1, there exists a positive number λ, (independent of ϵ), such that

∥TR(p0(t, ϵ))∥ ≤ b ϵ, (3.66)

for some positive b independent of ϵ for all ϵ in a nighbourhood of zero.

Thus, Sections 3.4.1 and 3.4.2 together with the results of Section 3.3 show the exis-

tence of a unique solution of the problem (3.1) as stated on [0,∞), when the harvesting

is subcritical and survival applies. However, in the next section, we will consider the case

where the subcritical harvested population dies out in a short period of time and also the

assumptions A4, A5 are satisfied.
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3.5 Existence for Subcritical Harvesting: Extinction

Case

In this case, the leading approximation, p0(t, ϵ) as constructed in Section 2.3.1, reaches

zero (i.e., is extinguished) at t = t̃, i.e., in finite time. This is due to the initial population

µ being too low, and in spite of harvesting being subcritical. Further, beyond t = t̃ where

p0 is negative, p0(t, ϵ) → −∞ as t → t̂, for some t̂ > t̃; that is, p0 asymptotes to −∞ as

t → t̂.

Thus, if we select our a in C[0, a] such that t̃ < a < t̂, with a independent of ϵ and finite

for all ϵ in a neighbourhood of zero, we may expect to show that the assumptions A4 and

A5 hold on X = C[0, a].

Thus, if at time t̃ the population p0 reaches zero, we have

p0(t̃, ϵ) =
k(ϵ t̃)

2
(1 + χ(ϵ t̃) coth(

1

2
(t0(ϵ t̃) + A(ϵ t̃) + c0R))) = 0. (3.67)

Similarly, as t → t̂ (where 0 < t̃ < t̂), we have p0(t, ϵ) → −∞ if

tanh

[
1

2
(t0(ϵt) + A(ϵt) + c0R)

]
→ 0, (3.68)

which means that

1

2
(t0(ϵt̂) + A(ϵt̂) + c0R) = 0. (3.69)

From (3.67), we have

1 + χ(ϵt̃) coth(
1

2
(t0(ϵt̃) + A(ϵt̃) + c0R)) = 0, (3.70)

or,

1

2

(
t0(ϵt̃) + A(ϵt̃) + c0R

)
= arccoth

[
−1

χ(ϵt̃)

]
(3.71)

and since 0 < χ(ϵt̃) < 1, arccoth( 1
χ(ϵt̃)

) is defined and finite, so we can rewrite (3.71) as

t0(ϵt̃) + A(ϵt̃) + c0R = −2arccoth(
1

χ(ϵt̃)
). (3.72)
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Subtracting (3.72) from (3.69) gives

t0(ϵt̂)− t0(ϵt̃) + A(ϵt̂)− A(ϵt̃) = 2arccoth(
1

χ(ϵt̃)
). (3.73)

Now, from the definition (2.33) of t0,

t0(ϵt̂)− t0(ϵt̃) =
1

ϵ

∫ ϵt̂

ϵt̃

r(ϵ s)χ(ϵ s) ds (3.74)

and from assumption A1, there exist λ1, λ2 > 0 and independent of ϵ, such that

λ1 (t̂− t̃) ≤ t0(ϵt̂)− t0(ϵt̃) ≤ λ2 (t̂− t̃). (3.75)

Also, by boundedness properties (assumption A1,A2), there exist positive σ1, σ2 > 0

and independent of ϵ in a neighbourhood of zero, such that

−σ1 ϵ (t̂− t̃) ≤ A(ϵt̂)− A(ϵt̃) ≤ σ2 ϵ (t̂− t̃). (3.76)

Now, (3.73) leads to

t0(ϵt̂)− t0(ϵt̃) = 2arccoth(
1

χ(ϵt̃)
)− [A(ϵt̂)− A(ϵt̃)]. (3.77)

From the right hand side of (3.76), we have

−[A(ϵt̂)− A(ϵt̃)] ≥ −σ2 ϵ (t̂− t̃),

so that (3.77) becomes

t0(ϵt̂)− t0(ϵt̃) ≥ 2arccoth(
1

χ(ϵt̃)
)− σ2 ϵ (t̂− t̃). (3.78)

Using the right hand side of (3.75) gives

λ2 (t̂− t̃) ≥ 2arccoth(
1

χ(ϵt̃)
)− σ2 ϵ (t̂− t̃), (3.79)

which implies that

t̂− t̃ ≥
2arccoth( 1

χ(ϵt̃)
)

λ2 + σ2 ϵ
, (3.80)
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since 0 < χ(ϵt̃) < 1 and so coth−1( 1
χ(ϵt̃)

) has an upper limit independent of ϵ and as ϵ → 0.

Thus, there exists a positive number κ independent of ϵ for all ϵ in a neighbourhood of

zero such that

t̂− t̃ ≥ κ, (3.81)

i.e., t̂ and t̃ remain separated for all ϵ small enough.

The property (3.81) is an independent of µ, since c0R is not involved. i.e., it holds

for all µ less than the critical value producing extinction.

Also, from (3.69),

t0(ϵt̂) = −A(ϵt̂)− c0R,

which leads to

γ t̂ ≤ ϵ δ t̂+ |c0R|

for some γ, δ > 0 independent of ϵ.

Thus,

t̂ ≤ |c0R|
γ − ϵ δ

(3.82)

where c0R is independent of ϵ (but we may have c0R getting larger as µ tends to a critical

value). Thus t̂ is bounded above as ϵ → 0 for each given µ that satisfies (2.50).

Thus, in this case, the leading approximation p0(t, ϵ) reaches zero at t = t̃, and tends

to −∞ as t → t̂ > t̃. For all ϵ in a neighbourhood of zero, t̂ is bounded above, and the

interval [t̃, t̂] remains finite and non-empty. Thus, we may select our a to lie in [t̃, t̂], i.e.,

we choose

t̃ < a < t̂.

(For example we may choose a = (t̃+ t̂)/2, the midpoint of [t̃, t̂].)

Then, [0, a] is a finite bounded interval containing the zero of p0(t, ϵ) and on which p0(t, ϵ)

is a continuous bounded function of t for all ϵ in a neighbourhood of zero.

60



Thus, for this a we choose X = C[0, a], with [0, a] a finite interval, and seek to show that

the assumptions A4 and A5 hold for this choice.

Note that p0(t, ϵ) is negative on that part of [0, a] past the value t̃. We expect that the

exact solution p(t, ϵ), lying in a neighbourhood of p0, will also display this property. This

is, of course, not relevant to the physical context of the model (3.1).

3.5.1 Assumptions A4 and A5 are Valid.

With our choice of a as described above, [0, a] is a finite interval, independent of ϵ for all

ϵ in a neighbourhood of zero, and X = C[0, a], with

∥f∥ = sup
t∈[0,a]

|f(t, ϵ)|

for any f ∈ X.

We now show that, for this choice, A4 and A5 hold.

Assumption A4 is Valid:

T is bounded linear map on C[0, a].

For, since t ∈ [0, a] then

|Tf(t, ϵ)| ≤ e−ω(t,ϵ)

∫ a

0

|eω(s,ϵ)| ∥f(s, ϵ)∥ds

≤ sup
t∈[0,a]

e−ω(t,ϵ)

∫ a

0

|eω(s,ϵ)|ds ∥f∥ (3.83)

where e−ω(t,ϵ)
∫ a

0
|eω(s,ϵ)|ds is bounded, independent of ϵ.

Thus, there exists a c > 0 independent of ϵ such that

|Tf(t, ϵ)| ≤ c ∥f∥, (3.84)

for all t ∈ [0, a].

Assumption A5 is Valid:

Since in Section 3.4.2 we have proved that the Assumption A5 is satisfied for all t ≥ 0,

61



consequently it is satisfied on the bounded interval t ∈ [0, a]. Thus, there exists b > 0,

(independent of ϵ), such that

∥TR(p0(t, ϵ))∥ ≤ b ϵ, for any t ∈ [0, a].

Thus, from above results, this proves the existence of a unique solution of the problem

(3.1) as stated on [0, a], when the harvesting is subcritical but when extinction, occurs.

3.6 Existence for Supercritical Harvesting: Extinc-

tion Case

In this case, where the harvesting is so high so that the population declines to extinction

(zero) for any initial value. Using Assumptions A1-A3, and as in Section 3.5, we will

show that this extinction occurs in finite time. Further, as in Section 3.5, we show how a

choice of 0 < a < ∞ may be made so that we have X = C[0, a] for our function space as

introduced in Section 3.2.

Let suppose that the population p0 that presented by (2.54) reaches zero at time t∗1, (t
∗
1 >

0), i.e.,

p0(t
∗, ϵ) =

k(ϵ t∗)

2
(1− χ(ϵ t∗) tan(

1

2
(t0(ϵ t

∗)− A(ϵ t∗) + d0))) = 0, (3.85)

while p0 → −∞ as t → t̂1 > t∗1 where

cos
[
1
2
(t0(ϵt)− A(ϵt) + d0)

]
= 0, (3.86)

so that

t0(ϵ t̂)− A(ϵ t̂) + d0 = π, (3.87)

where t̂ > t∗.

From (3.85) , we have

1− χ(ϵ t∗) tan(
1

2
(t0(ϵ t

∗)− A(ϵ t∗) + d0)) = 0 (3.88)
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and so,

t0(ϵ t
∗)− A(ϵ t∗) + d0 = 2arctan(

1

χ(ϵ t∗)
) (3.89)

where χ(ϵ t∗) ≥ 1 and therefore π
4
≤ arctan( 1

χ(ϵ t∗)
) < π

2
.

Subtracting (3.89) from (3.87) gives

t0(ϵ t̂)− t0(ϵ t
∗)− [A(ϵ t̂)− A(ϵ t∗)] = π − 2 arctan(

1

χ(ϵt)
). (3.90)

Again, using (2.33), for all t∗, t̂1, we obtain

t0(ϵ t̂)− t0(ϵ t
∗) =

∫ ϵ t̂

ϵ t∗
r(ϵ s)χ(ϵ s) ds. (3.91)

From assumption A1, there exist λ̃, σ̃ > 0 and independent of ϵ, such that

t0(ϵ t̂)− t0(ϵ t
∗) ≤ λ̃ (t̂− t∗), (3.92)

and

A(ϵ t̂)− A(ϵt∗) ≥ −σ̃ ϵ (t̂− t∗). (3.93)

Now, (3.90) leads to

t0(ϵt̂)− t0(ϵt) = π − 2 arctan(
1

χ(ϵt)
) + [A(ϵt)− A(ϵt)],

≥ π − 2 arctan(
1

χ(ϵt̃)
)− σ̃ ϵ (t̂− t∗), (3.94)

and from (3.92), we have

λ̃ (t̂− t∗) ≥ π − 2 tan−1(
1

χ(ϵt)
) + σ̃ ϵ (t̂− t∗), (3.95)

which implies that

t̂− t∗ ≥ |
π − 2 arctan( 1

χ(ϵt∗
)

λ̃ + σ̃ ϵ
| (3.96)

where the right hand side is bounded independent of ϵ, so for small enough ϵ, there exists

a positive number such ζ independent of ϵ such that

t̂− t∗ ≥ ζ, (3.97)
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we note from (3.97) that t̂− t∗ is independent of µ. Also, from (3.87), we have

t0(ϵ t̂) = π − d0 + A(ϵ t̂)

where −π
2
< |d0| < π

2
and so for some σ̃, λ̃ > 0 independent of ϵ then

δ̃ t̂ ≤ π − d0 + σ̃ ϵ t̂

i.e.,

t̂ ≤ |π − d0

δ̃ − ϵ σ̃
| (3.98)

where d0 given by (2.56).

Thus t̂ has an upper limit as ϵ → 0, for a given µ. As in Section 3.5, we may choose a

such that

t∗ < a < t̂

where the interval [t∗, t̂] remains non-empty for all ϵ in a neighbourhood of zero. Then,

[0, a], is a finite interval, with a bounded above for all such ϵ. Then, we can choose

X = C[0, a] as our function space, for such an a. The proof that assumptions A4 and

A5 are valid then follows as in Section 3.5.

3.7 Discussion

The contraction mapping proof used in this Chapter has the two-fold benefit of delivering

existence and uniqueness of solution results for the initial value problem (3.1), for all ϵ in

a neighbourhood of zero. Even more, the smoothness of the kernel in the integral equation

(3.10) (ensured by the conditions A1 and A2 imposed on the model parameters), means

that the solution p(t, ϵ) and its derivative p′(t, ϵ) are approximated closely as ϵ → 0 by

the leading approximation p0(t, ϵ) and its derivative p′0(t, ϵ), respectively.

The conditions A1 and A2 imposed on the model parameters r(ϵt), k(ϵt) and h(ϵt)

are sufficient to make the proof proceed.
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It is important to note that the proof depends critically on the assumption A3 holding

for all relevant t. This assumption governs whether the level of harvesting is below or

above a (slowly varying) critical value. Thus, points t̄ where δ(ϵt̄) = 0 (transition points,

as described in Chapter 2) are ruled out. The effects of transitions will be dealt with

using a formal process in Chapter 4, following.

A consequence of the contraction mapping construction is the existence of an itera-

tive scheme generating a sequence un(t, ϵ) of approximations to the fixed point u of the

nonlinear map N , that takes the form

un+1 = N un, n = 0, 1, 2 . . .

which converges (in the norm ∥ . ∥) to the fixed point u for any initial iterate u0 in the

ball B.

In terms of the linear map T , this becomes

un+1 = TR(p0(t, ϵ)) + Tγ(un(t, ϵ)). (3.99)

If we choose u0(t, ϵ) = 0 (which lies in B), we get, from (3.99), a first approximation

u1 = TR(p0(t, ϵ)), (3.100)

which we know is O(ϵ) whatever our choice of the space X. This just reinforces the

estimates obtained in the proof. In practice, calculation of u1, and further terms in

the sequence of iterates un from (3.99) would be near impossible. Hence, we construct

our approximating sequence by the direct multi-scaling method used here, safe in the

knowledge that it does represent an existing solution to the problem. Thus, the proof of

this chapter puts this formula process on a firm basis.

In each of the cases considered in Chapter 2, we have constructed two term approximation

of the form

p0(t, ϵ) + ϵ p1(t, ϵ) + . . . (3.101)
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for the solution of the problem (2.5). It seems reasonable that, at the expense of some

analysis, the results of the present chapter could be obtained replacing the leading order

approximation p0(t, ϵ) by (3.101). Thus, we expect to find that A5 would be replaced by

∥T R(p0 + ϵ p1)∥ ≤ b ϵ2, (3.102)

where the properties of T would be obtained, for ϵ small enough.

Then, the existence-uniqueness proof should proceed as before, with the ball B replaced

by

B = {u : ∥u∥ ≤ mϵ2}.

We would then obtain a validation of the two-term approximation (3.101); i.e., we would

replace the estimate (3.15) by

p(t, ϵ)− p0(t, ϵ)− ϵ p1(t, ϵ) = O(ϵ2).

The proof put forward in this chapter is being prepared for publication in Idlango et al

[38].
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Chapter 4

Analysis of Transitions in a

Harvested Logistic Model

4.1 Introduction

In Chapter 2 and in Idlango et al. [40], we investigated the evolution of a single species

population p(t, ϵ) subject to a slowly varying logistic harvesting law (2.3), which can be

characterized in dimensionless form as the initial value problem

dp(t, ϵ)

dt
= r(t1)p(t, ϵ)

(
1− p(t, ϵ)

k(t1)

)
− σh(t1), p(t = 0, ϵ) = µ, (4.1)

where p(t, ϵ) is the population at times t ≥ 0, µ > 0 is an arbitrary initial population,

while t1 = ϵ t, represents the ‘slow’ time scale and t is a ‘normal’ time scale, (see Chapter

2, Section 2.2.1). The dimensionless parameter ϵ is the ratio of the normal to slow time

scales, so that 0 < ϵ ≪ 1.

Applying a multiscaling technique based on the limit ϵ → 0, we obtained an approximate

expansion for p(t, ϵ) and used this to examine the behaviour of the solutions of (4.1) as

time progresses, (see Chapter 2, Sections 2.3.1, 2.3.2 and [40]).

The behaviour of these solutions was found to be dependent on the function δ(t1) defined
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in (2.25) as

δ(t1) = 1− 4σh(t1)

r(t1) k(t1)
, where t1 = ϵ t. (4.2)

When δ(t1) > 0 the harvesting is subcritical; and in this case, we showed that, providing

µ > 1
2
k(0){1 − χ(0)}, the leading terms of the expansions (2.35) and (2.46) tend to a

slowly varying limiting state (2.41), i.e.,

p(t, ϵ) → 1
2
k(t1) {1 + χ(t1)} − ϵ

{
(k(t1)χ(t1))

′ + k′(t1)

2 r(t1)χ(t1)

}
+O(ϵ2) (4.3)

as t → ∞; that is, the population survives to this state. Note that this slowly varying

limiting state is independent of the initial population, µ. When 0 < µ < 1
2
k(0){1−χ(0)},

the leading term (2.47) of the expansion (2.46) tends to zero in finite time; i.e., the

population is extinguished.

When δ(t1) < 0, so that the harvesting is supercritical, the leading term (2.54) of the

expansion (2.53) tends to zero in finite time; i.e., the population is extinguished.

We note that the both of the leading term expansions (2.36) (or (2.47)) and (2.54)

are valid in regions where δ(t1) is strictly positive or negative, respectively; i.e., δ(t1) is

bounded away from zero as ϵ → 0. However, in a neighbourhood of points where δ(t1) = 0,

these expansions become disordered, in the sense that at points t1 where δ(t1) = O(ϵ),

the second terms in these expansions will be comparable with the leading order ones.

This disordering occurs, in particular, in a neighbourhood of points where subcritical

harvesting converts to the supercritical case. Thus, to represent the solution of (2.3) in

a neighbourhood of points where δ(t1) = 0, we need to reconsider (4.1) in more detail,

following a similar line of analysis to that of [30, 31, 56].

As well, as we note above (Chapter 2, Section 2.3.1), survival to the limiting state (4.3)

occurs only for a specific range of values of the parameter µ. For smaller µ values, even

with subcritical harvesting, the population dies out in finite time. Thus, in the following

analysis, we will focus specifically on the case where we initially have subcritical harvesting

with survival to the state (4.3) which converts to supercritical harvesting, with subsequent
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extinction. This phenomena may occur as a result of increasing the harvesting rate over

time (i.e., the sign of δ(t1) changes from positive to negative) leading the population to

decline and ultimately extinction.

As we have noted above, this change is characterized by a transition from a region

where δ(t1) > 0 (survival) to a region where δ(t1) < 0 (extinction). So, this transition

point will occur at a zero of δ(t1).

Specifically, we assume that at the transition time, expressed by t1 = t̄1, the function

δ(t̄1) satisfies

δ(t̄1) = 0 and δ′(t̄1) < 0, (4.4)

the second inequality ensuring that the zero of δ(t1) is simple. We will thus subdivide the

region t ≥ 0 (t1 ≥ 0) , that is indicated in Figure 4.1 as follows:

Region 1: Harvesting is subcritical, with survival, and 0 ≤ t1 < t̄1;

Region 2: A transition region surrounding t̄1;

Region 3: Harvesting is supercritical, with extinction and t̄1 < t1 < Te, where Te the

time at which extinction occurs.

In the following Sections, we will obtain an approximate representation for the solution

of (4.1) over all t ≥ 0, by combining the approximate solutions of the initial vale problem

(4.1) in Regions 1 and 3 with an approximate solution in the transition region (Region

2), using a matching technique. We will then create an approximate solution for (4.1),

uniformly valid on t ≥ 0 by a composition process.
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Figure 4.1: Graphical representation of the Regions 1, 2 and 3.

4.2 Solutions Away From the Transition Region ( Re-

gion 1 and 3)

In this Section, we consider the solutions of (4.1) in Region 1 where the harvesting is

subcritical, (i.e., from t = 0 to a neighbourhood to the left of the transition point) and in

Region 3 where the harvesting is supercritical (i.e., from a neighbourhood to the right of

the transition point to extinction time Te ).

In Region 1 (as analysed in Section 2.3.1), where δ(t1) > 0, as discussed above, the

solution of (4.1) is represented by (2.40) or (2.44), and tends to the limiting expansion

(4.3).

In Region 3, the solution is approximated by the leading order term of the expansion

(2.54), redefined here by

p0(t, ϵ) =
1
2
k(t1)

{
1−

√
−δ(t1) tan

[
1
2
(t̃0 − Ã(t1) + d)

]}
+O(ϵ), (4.5)
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where

t̃0 =
1

ϵ

∫ t1

t̄1

r(s)
√
−δ(s) ds,

Ã(t1) = −
∫ t1

t̄1

k′(s)

k(s)
√

−δ(s)
ds (4.6)

are appropriatly modified forms of t0, A(t1) while d is a constant to be determined.

4.3 Solution within the Transition Region (Region 2)

Here, we construct an approximate solution of the differential equation in the initial value

problem (4.1) valid in Region 2. In order to investigate this transition region solution, we

reformulate (4.1) to include the δ(ϵt) term, i.e., from (2.25) we have

δ(t1) = 1− 4σh(t1)

r(t1) k(t1)
,

σ h(t1) =
r(t1) k(t1)

4
(1− δ(t1)), (4.7)

so that the differential equation in (4.1) becomes

dp(t, ϵ)

dt
= r(t1)p(t, ϵ)

(
1− p(t, ϵ)

k(t1)

)
− r(t1) k(t1)

4
(1− δ(t1)) . (4.8)

We now examine solutions of (4.8) in a neighbourhood of the transition point, at which

δ(t̄1) = 0. To analyse this transition region in more detail, we define a local variable τ

by

t1 = t̄1 + ϵατ, −∞ < τ < ∞, (4.9)

where α is an undetermined positive constant.

In terms of τ , the solution of (4.8) is denoted by

p̃(τ, ϵ) ≡ p(t̄1 + ϵατ, ϵ).

In terms of the new variables p̃ and τ defined in above, the differential equation (4.8)

becomes

dp̃

dτ
= ϵα−1 r(t̄1 + ϵατ)

(
p̃− p̃2

k(t̄1 + ϵατ)
− k(t̄1 + ϵατ)

4
(1− δ(t̄1 + ϵατ))

)
. (4.10)
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Expanding (4.10) in powers of ϵ gives

dp̃

dτ
=

(
r(t̄1)p̃

(
1− p̃

k(t̄1)

)
− (1/4) r(t̄1)k(t̄1)

)
ϵα−1

+[ r′(t̄1) p̃

(
1− p̃

k(t̄1)

)
+

r(t̄1) k
′(t̄1)

k(t̄1)2
p̃2 +

1

4
r(t̄1)k(t̄1)δ

′(t̄1)

−1

4

d

dt̄1
(r(t̄1)k(t̄1)) ]τ ϵ

2α−1 +O(ϵ3α−1). (4.11)

Now, we seek a value of α that will create a balance of orders as ϵ → 0 in this differential

equation.

To obtain a value for α, we look back to the first two terms of the Region 1 expansion,

(4.3), in order to gain greater insight.

Substituting (4.9) into (4.3) and expanding the terms for small ϵ gives an expansion

for the limiting population (4.3) in terms of τ as

1
2
k(t̄1) +

1
2
k(t̄1)

√
δ′(t̄1) τ ϵ

α
2 + 1

2
τ k′(t̄1) ϵ

α +O(ϵ3α/2). (4.12)

Based on this, we propose that the solution in the transition region has the form

p̃(τ, ϵ) = 1
2
k(t̄1) + ϵ

α
2 u0(τ) + ϵα u1(τ) +O(ϵ3α/2), (4.13)

where u0, u1 are as yet undetermined functions.

We see that the first term of (4.13) now is O(1) and the second term is O(ϵ
α
2 ) as ϵ → 0.

Substituting (4.13) into the transition equation (4.11) gives the leading terms as

ϵ
α
2
du0(τ)

dτ
+ ϵα

du1(τ)

dτ
=

(
− r(t̄1)

k(t̄1)
u2
0(τ) +

1

4
r(t̄1) k(t̄1) δ

′(t̄1) τ

)
ϵ2α−1

+ O(ϵ5α/2−1), (4.14)

where now, the first term of the right hand side of (4.14) is O(ϵ2α−1). Thus, there is a

balance between the O(ϵ
α
2 ) term on the left side of (4.14) with O(ϵ2α−1) on the right when

α = 2/3.

Choosing α = 2/3, we have (4.13) as

p̃(τ, ϵ) = 1
2
k(t̄1) + ϵ1/3 u0(τ) +O(ϵ2/3), (4.15)
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while (4.12) becomes

1
2
k(t̄1) +

1
2
k(t̄1)

√
δ′(t̄1) τ ϵ

1/3 + 1
2
τ k′(t̄1) ϵ

2/3 +O(ϵ), τ < 0. (4.16)

Also, with α = 2/3, the differential equation for u0(τ), (4.14), becomes

du0(τ)

dτ
= − r(t̄1)

k(t̄1)
u2
0(τ) +

1

4
r(t̄1) k(t̄1) δ

′(t̄1) τ, δ′(t̄1) < 0, (4.17)

which is a Riccati differential equation. Now, for large and negative τ , we expect the left

hand side of (4.17), du0(τ)/dτ , tends to zero, hence

r(t̄1)

k(t̄1)
u2
0(τ) − 1

4
r(t̄1) k(t̄1) δ

′(t̄1) τ → 0

and so, for large and negative τ , the solution u0(τ) of (4.17) is

u0(τ) → ±1

2
k(t̄1)

√
δ′(t̄1) τ , τ < 0 δ′(t̄1) < 0. (4.18)

If τ < 0 and u0 > 1
2
k(t̄1)

√
δ′(t̄1) τ then the right hand side of (4.17) is negative. Thus,

du0(τ)/dτ is negative and u0(τ) decreases as τ increases. The solution moves towards the

positive branch in (4.18).

If τ < 0 and −1
2
k(t̄1)

√
δ′(t̄1) τ < u0 <

1
2
k(t̄1)

√
δ′(t̄1) τ then the right hand side of (4.17)

is positive. Thus, du0(τ)/dτ is positive and u0(τ) increases, As τ increases, the solution

moves towards the positive branch in (4.18).

If τ < 0 and u0 < −1
2
k(t̄1)

√
δ′(t̄1) τ then the right hand side of (4.17) is negative and

so, u0(τ) decreases and becomes more negative as τ increases, (i.e., the solution moves

away from the negative solution in (4.18).

Thus, for large and negative τ the solution of (4.17) approaches the positive solution

of (4.18)

Also, comparing (4.18) with (4.12), we see that to match terms in Region 2 with

corresponding terms in Region 1, the correct solution branch as τ → −∞ to be selected

must satisfy

u0(τ) → +
1

2
k(t̄1)

√
δ′(t̄1) τ . (4.19)
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Now, as we have noted, (4.17) is a Riccati equation; and this can be solved using the

Cole-Hopf transformation (see [63]), by which u0(τ) is related to ϕ(τ) by

u0(τ) =
k(t̄1)

r(t̄1)

1

ϕ(τ)

d ϕ(τ)

dτ
=

k(t̄1)

r(t̄1)

d (lnϕ(τ))

dτ
. (4.20)

Substituting (4.20) into (4.17) produces a second order linear equation for ϕ(τ);

d2 ϕ(τ)

dτ 2
− a3 τ ϕ(τ),= 0 (4.21)

where

a3 =
1

4
r(t̄1)

2 δ′(t̄1) < 0. (4.22)

Equation (4.21) is an Airy differential equation which has the general solution

ϕ(τ) = C1Ai(a τ) + C2 Bi(a τ). (4.23)

where Ai(x) and the related function Bi(x), are Airy functions see [1].

Combining (4.19) and (4.20), we require that

d (lnϕ(τ))

dτ
→ r(t̄1)

2

√
δ′(t̄1) τ as τ → −∞,

and so

lnϕ(τ) → 1

3
r(t̄1) τ

√
δ′(t̄1) τ as τ → −∞

which leads to

ϕ(τ) → e
1
3
r(t̄1) τ

√
δ′(t̄1) τ , δ′(t̄1) < 0, as τ → −∞. (4.24)

Consequently, as τ → −∞,

ϕ(τ) → 0. (4.25)

However, [1]- Chapter 10, as τ → −∞

Ai(a τ) → 0 and Bi(a τ) → ∞.

Thus, in (4.23) we choose C2 = 0 (to satisfy condition (4.25)) and hence

ϕ(τ) = C1Ai(a τ),
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so that the solution (4.20) becomes

u0(τ) =
k(t̄1)

r(t̄1)

aAi′(a τ)

Ai(a τ)
. (4.26)

We note that u0(τ) contains no arbitrary constant.

Substituting (4.26) into (4.15) gives the solution in the transition region (Region 2) as

p̃(τ, ϵ) = 1
2
k(t̄1) + ϵ1/3

k(t̄1)

r(t̄1)

aAi′(a τ)

Ai(a τ)
+O(ϵ2/3). (4.27)

As τ → −∞ (i.e., as we move into Region 1), the solution (4.27) has the property

p̃(τ, ϵ) → 1
2
k(t̄1) + ϵ1/3 1

2
k(t̄1)

√
δ′(t̄1) τ + O(ϵ2/3) (4.28)

Thus, by comparing the first two leading order terms of (4.16) and (4.28), we see that

matching is automatically achieved. Moreover, the common terms (or common part) in

these two expansions is given by

C1 2(τ, ϵ) =
1
2
k(t̄1) + ϵ1/3 1

2
k(t̄1)

√
δ′(t̄1) τ . (4.29)

Thus, in the combined Region 1 and Region 2, (2.36) represents the leading term approx-

imate solution of (4.1) in Region 1, while (4.27) represents the leading term approximate

solution in Region 2. These approximate solutions merge in going from Region 1 to Region

2, with a common part being given by (4.29).

We now consider the case of the transition of the solutions from Region 2 to Region

3, typified by the limit τ → ∞.

From (4.26), as time τ → ∞ (and using Ai(−z) and Ai′(−z) expansions(see [1] -

Chapter 10)), we get for large positive τ ,

u0(τ) =
k(t̄1)

2

√
−δ′(t̄1)

√
τ

[
− tan(ζ − π

4
) +

1

ζ
[a1 tan2(ζ − π

4
) + b1] +O

(
1

ζ2

)]
, (4.30)

where

ζ =
r(t̄1)

3

√
−δ′(t̄1) τ

3/2, a1 =
5
72
, b1 =

−7
5
a1 =

−7
5
( 5
72
) = −7

72
.
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Thus, as τ → ∞, from (4.27),

p̃(τ, ϵ) → 1
2
k(t̄1)− ϵ1/3

k(t̄1)

2

√
−δ′(t̄1)

√
τ{tan(ζ − π

4
)

+
1

ζ
[a1 tan2(ζ − π

4
) + b1] +O

(
1

ζ2

)
}+ O(ϵ2/3). (4.31)

This is the expansion for the Region 2 solution on moving into Region 3.

We now consider the expansion (4.5), (4.6) valid in Region 3, and its behaviour as we

move from Region 3 to Region 2. From (4.9), with α = 2/3 we have,

t1 = t̄1 + ϵ2/3τ, (4.32)

and so

τ =
(t1 − t̄1)

ϵ2/3
. (4.33)

The substitution

υ =
1

ϵ2/3 τ
(s− t̄1), (4.34)

so that

ds = ϵ2/3 τ dυ,

converts the first of (4.6) to

t̃0 =
1

ϵ

∫ 1

0

r(t̄1 + ϵ2/3 τ υ)
√

−δ(t̄1 + ϵ2/3 τ υ) ϵ2/3 τ dυ.

Expanding the functions r(t̄1 + ϵ2/3 τ υ), δ(t̄1 + ϵ2/3 τ υ) in powers of small ϵ gives

r(t̄1 + ϵ2/3 τ υ) = r(t̄1) + ϵ2/3 τ υ r′(t̄1) +O(ϵ4/3)

and √
−δ(t̄1 + ϵ2/3 τ υ) =

√
−δ′(t̄1) +O(ϵ), δ(t̄1) = 0,

so that, integrating with respect to υ gives

t̃0 = r(t̄1)
√

−δ′(t̄1) τ
3/2 +O(ϵ). (4.35)
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Similarly, from (4.6) and using (4.34) we have

Ã(t1) = −
∫ 1

υ=0

k′(t̄1 + ϵ2/3 τ υ)

k(t̄1 + ϵ2/3 τ υ)
√
−δ′(t̄1 + ϵ2/3 τ υ)

dυ.

Expanding the integrand for small ϵ and then integrating with respect to υ gives

Ã(t1) = −2 ϵ1/3
k′(t̄1)

k(t̄1)
√
−δ′(t̄1)

√
τ +O(ϵ2/3). (4.36)

where τ is defined by (4.33). Thus, by using (4.32), substituting the leading terms of

(4.35) and (4.36) into the expansion (4.5), and expanding in powers of ϵ, we obtain

p0(t, ϵ) =
k(t̄1)

2
−ϵ1/3

k(t̄1)

2

√
−δ′(t̄1)

√
τ tan

[
1

3

√
−δ(t̄1) r(t̄1) τ

3/2 +
d

2

]
+O(ϵ2/3). (4.37)

Comparing the leading terms of (4.37), which represents the solution of Region 3 with

the transition solution (4.31) for positive τ , we see that these agree on choosing

d = −π

2
. (4.38)

With this choice, the common terms (common part) between (4.31) and the expansion

(4.37) becomes

C2 3(τ, ϵ) =
k(t̄1)

2
− ϵ1/3

k(t̄1)

2

√
−δ′(t̄1)

√
τ tan

[
1

3

√
−δ(t̄1) r(t̄1) τ

3/2 − π

4

]
+O(ϵ2/3),

(4.39)

where τ is defined by (4.33).

4.4 A Uniform Approximation

We have constructed approximations to the solution of the problem (4.1) on separate

subregions Region 1, Region 2 and Region 3 as above. Now, we formulate uniformly valid

approximations to this solution on the entire interval t ≥ 0. We begin by constructing an

approximation valid uniformly on [0, t̄1], that is, up to the transition point, by using the

additive composition technique. This involves adding the leading terms of the approximate
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solution on Region 1 ((2.36) or (2.47)) to (4.27) and then subtracting the common part

(4.28).

Thus, this uniform solution p12(t, ϵ) in this case becomes

p12(t, ϵ) = p0(t, ϵ) + p̃(τ, ϵ)− C12(τ, ϵ), (4.40)

where the leading term of p0(t, ϵ) is given by (2.36) or (2.47), so that

p12(t, ϵ) =
1
2
k(t1) +

k(t1)
√

δ(t1)

2
tanh

[
1
2
(t0 + A(t1) + c0)

]
+

k(t̄1)

r(t̄1)

aAi′(a τ)

Ai(a τ)

−1
2
k(t̄1)

√
δ′(t̄1) τ +O(ϵ), 0 ≤ t1 < t̄1, τ < 0, (4.41)

where a, τ are given by (4.22) and (4.33) respectively; or

p12(t, ϵ) =
1
2
k(t1) +

k(t1)
√
δ(t1)

2
coth

[
1
2
(t0 + A(t1) + c0R)

]
+

k(t̄1)

r(t̄1)

aAi′(a τ)

Ai(a τ)

−1
2
k(t̄1)

√
δ′(t̄1) τ +O(ϵ), 0 ≤ t1 < t̄1, (4.42)

where t0, and A(t1) are given by (2.33) and (2.34) respectively, τ is defined by (4.33),

while c0, c0R are defined by (2.38) and (2.45) respectively, (see the discission on c0 values

in Chapter 2 - Section 2.3.1 ).

We can write (4.41) and (4.42) in terms of t, t̄ using (4.32) and (4.33) as

p12(t, ϵ) =
1
2
k(ϵ t) +

k(ϵ t)
√
δ(ϵ t)

2
tanh

[
1
2
(t0 + A(ϵ t) + c0)

]
+ϵ1/3

k(ϵ t̄)

r(ϵ t̄)

aAi′(a ϵ1/3 (t− t̄))

Ai(a ϵ1/3 (t− t̄))
− 1

2
ϵ1/2 k(ϵ t̄)

√
−δ′(ϵ t̄) (t− t̄)1/2 +O(ϵ2/3), 0 < ϵt < ϵt̄.

(4.43)

or

p12(t, t̄, ϵ) =
1
2
k(ϵ t) +

k(ϵ t)
√
δ(ϵ t)

2
coth

[
1
2
(t0 + A(ϵ t) + cR0)

]
+
k(ϵ t̄)

r(ϵ t̄)

aAi′(a ϵ1/3 (t− t̄))

Ai(a ϵ1/3 (t− t̄))
− 1

2
ϵ1/2 k(ϵ t̄)

√
−δ′(ϵ t̄) (t− t̄)1/2 +O(ϵ2/3) 0 < ϵt < ϵt̄.

(4.44)
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Again by applying the same composition technique, we create a uniform approximation

on [t̄,∞), that is, beyond the transition point.

From (4.5), (4.31) and (4.39) we have a general expansion for all t1 ≥ t̄1 as

p23(t, ϵ) = p̃0(t, ϵ) + p̃(τ, ϵ)− C23(τ, ϵ), (4.45)

and so

p23(t, ϵ) =
1
2
k(t1)−

k(t1)
√
−δ(t1)

2
tan
[
1
2
(t̃0 + Ã(t1)−

π

2
)
]
+

k(t̄1)

r(t̄1)

aAi′(a τ)

Ai(a τ)

+ ϵ1/3
k(t̄1)

2

√
−δ′(t̄1)

√
τ tan(

1

3

√
−δ(t̄1) r(t̄1) τ

3/2 − π
4
), t1 > t̄1. (4.46)

Rewriting (4.46) in terms of t and t̄ gives

p23(t, ϵ) =
1
2
k(ϵt)−

k(ϵt)
√

−δ(ϵt)

2
tan
[
1
2
(t̃0 + Ã(ϵ t)− π

2
)
]
+

k(ϵt̄)

r(ϵt̄)

aAi′(a ϵ1/3 (t− t̄))

Ai(a ϵ1/3 (t− t̄))

+ ϵ1/2
k(ϵt̄)

2

√
−δ′(ϵt̄) (t− t̄)1/2 tan(

ϵ1/2

3

√
−δ(ϵt̄) r(ϵt̄) (t− t̄)3/2 − π

4
), ϵt > ϵt̄.

(4.47)

Thus, the combination of (4.43) (or (4.44)) and (4.47) provide two component composite

expansions for the population p(t, ϵ) which cover Regions 1, 2 and 3; i.e.,over all t ≥ 0.

4.5 An Example: Periodic Growth with Saturating

Carrying Capacity and Linear Harvesting

In the previous Section, we have constructed an explicit expansion approximating the

solution of the problem (4.1) that gives the population p(t, ϵ) as a function of time over

the Regions 1, 2 and 3; i.e., over all t ≥ 0. In the case considered, the population has made

a transition from a subcritical harvesting with survival situation via the transition region

to a supercritical harvesting situation resulting in extinction. This expansion represents

the solution of (4.1) on t ≥ 0 for any arbitrary slowly varying parameters r(ϵ t), k(ϵ t)

and h(ϵ t), and small and positive ϵ.
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We now consider the application of these results of this Section to specific examples

of the functions r, k and h.

We choose the parameters r, k and h as slowly varying functions given by

r(ϵ t) = 1− 0.3 sin(2 ϵ t),

k(ϵ t) = 1 + 0.2 tanh(ϵ t),

h(ϵ t) = 1 + 2 ϵ t. (4.48)

where ϵ = 0.05 and σ = 0.05 and from (4.2), we have

δ(ϵ t) = 1− 4
0.2(1 + 2 ϵ t)

(1− 0.3 sin(2 ϵ t)) (1 + 0.2 tanh(ϵ t))
. (4.49)

Here, the growth rate r(ϵ t) has a slow periodic variation while the carrying capacity k(ϵ t),

increases slowly from and monotonically 1 to a saturation value of 1.2. The harvesting

rate, h(ϵ t), is a slowly increasing linear function of t. These choices might correspond to

a population that has a slow periodic growth rate, r, perhaps due to seasonal variation,

being harvested at a slowly increasing rate in an environment providing an increasing but

limited carrying capacity, k.

Figure 4.2 shows that for these choices, (with σ = 0.05 and ϵ = 0.05), δ(ϵt) given by

(4.2) has a single transition (i.e., δ(ϵt) changes from positive to negative) at the transition

point t̄ ≈ 58.

On the other hand, Figure 4.3 shows that, with the choices (4.48) and σ = 0.05 and

ϵ = 0.01, δ(ϵt) given by (4.2) has a single transition at t̄ ≈ 33.

Figure 4.4 displays the behaviour of the numerical solution of (4.1) incorporating (4.2)

with σ = 0.05, ϵ = 0.05 and initial population µ = 0.3, obtained using a fourth order

explicit Runge-Kutta method with step size h = 0.001. This clearly shows the evalua-

tion of the population from the starting value 0.3, through a relatively rapid transient

region (where t0 variation dominates) to a slowly varying limiting state. As t approaches

the transition point, the population diverges from this limiting state, and on passing
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Figure 4.2: Plot of δ(ϵt) given by (4.2) with σ = 0.05 ϵ = 0.05 using data of

(4.48).
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Figure 4.3: Plot of δ(ϵt) given by (4.2) with σ = 0.05 ϵ = 0.01 using data of

(4.48).
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transition, reduces monotonically to zero at t ≈ 66.2.

In Figures 4.5 to 4.10, we compare the behaviour of this numerical solution with

the various components of the expansions of the expression (4.43) and (4.47), which, for

µ = 0.3, apply here.

Figure 4.5 shows that the leading term of (4.43), corresponding to (2.36) agrees very

well with the numerical solution, up to a neighbourhood of the transition point (where

δ(t1) ≈ 0) where they diverge.

Figure 4.6 considers the transition region to the left of transition point t < t̄, and

compares the numerical solution with the leading terms (2.36), the transition solution

(4.27) and the common part C12 given by (4.29). Clearly, close to t̄, C12 (the dashed line)

and the leading term expansion (2.36)(continuous curve) are virtually identical; so the

composition (4.40) is, effectively, the transition solution (4.27).

On the other hand, away from t̄, C12 is close to the transition solution (4.27), so (4.40)

gives the leading term (2.36) to leading order. Thus, in either direction (for t < t̄), the

composition (4.40) approximates the numerical solution well.

In Figure 4.7 we see the uniformly valid expansion (4.43) based on (4.40) up to the

transition point, i.e., in t < t̄, compared with the numerical solution. The agreement is

very good.

Figure 4.8 considers the transition region just past the transition point, i.e., in t > t̄,

where the harvesting is now supercritical. Here, the leading order supercritical term (4.37)

and common term C23 given by (4.39) are very close throughout. Near to the transition

point (with t > t̄), then, the compositions (4.45) gives the transition solution; and this

closeness continues up to the point of extinction, with small correction.

Figure 4.9 shows that the composite expansion (4.47) and numerical solution remain

close up to the point of extinction.

Figure 4.10 compares the union of the two composite expansions (4.43) and (4.47) on
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Figure 4.4: Plot of the numerical solution of (4.1) using (4.48), where µ =

0.3, ϵ = 0.05, σ = 0.05 and t̄ ≈ 58.

t ≥ 0, with the numerical solution. We see that they are clearly very close.

In Figures 4.11 to 4.15, we see a repeat of the above sequence of comparisons for the

case where ϵ = 0.01, σ = 0.05 and µ = 1.3. Here, the transition value is at t̄ ≈ 33, and

the composite expansion (4.44) applies on the subcritical region.

Note that for both of the initial values considered (µ = 0.3, 1.3), the population is in

a surviving state in t < t̄, but becomes extinct on t > t̄, after a finite time.
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Figure 4.5: Plot of the numerical solution of (4.1)(continuous curve) and the

leading term asymptotic approximation (4.43) up to the transition point (dashed

curve) using (4.48), with µ = 0.3, ϵ = 0.05, σ = 0.05 and t̄ ≈ 58.
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Figure 4.6: Plot of the leading term expansion (2.36) (continuous curve) and

transition solution (4.27) (solid with filled squares) with common terms (4.29)

(dashed line) and Subcritical numerical solution of (4.1)(dotted), using the pa-

rameters (4.48) µ = 0.3, ϵ = 0.05, σ = 0.05.
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Figure 4.7: Plot of the uniformly valid subcritical expansion (4.43)(continuous

curve) and compared with numerical solution (dashed) using the parameters

(4.48) with µ = 0.3, ϵ = 0.05, and σ = 0.05.
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Figure 4.8: Plot of the two terms of supercritical expansion (4.5)(continuous

curve) using (4.48) where µ = 0.3, ϵ = 0.05 and transition solution (4.27) (solid

with filled squares), with common terms (dashed).
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Figure 4.9: Plot of the valid approximate expansion (4.47) (continuous curve)

and the numerical solution (dashed) for the choice (4.48) where µ = 0.3, ϵ =

0.05, σ = 0.05.
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Figure 4.10: Plot of the composite expansions (4.43), (4.47) (solid) with the

numerical solution of (4.1)(dashed), considering the choice (4.48) with µ =

0.3, ϵ = 0.05, σ = 0.05 and t̄ ≈ 58..
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Figure 4.11: Plot of the numerical solution of (4.1) using (4.48), where µ =

1.3, ϵ = 0.01, σ = 0.05
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Figure 4.12: Plot of the numerical solution of (4.1)(continuous curve) and the

two term asymptotic approximation up to the transition point (2.47) (dashed

curve) using (4.48), where µ = 1.3, ϵ = 0.01, σ = 0.05 and t̄ ≃ 33
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Figure 4.13: Plot of leading term asymptotic expansion (2.47) (continuous

curve) and transition solution (4.27) (solid with filled squares) with common

terms (4.29)(dashed line) and Subcritical numerical solution of (4.1)(dotted),

using the parameters (4.48) with µ = 1.3, ϵ = 0.01, and σ = 0.05 .
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Figure 4.14: Plot of uniform subcritical expansion (4.44) (continuous curve),

considering the parameters (4.48) with µ = 1.3, ϵ = 0.01, and σ = 0.05, and

compared with numerical solution (dashed ).
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Figure 4.15: Plot of composite expansions (4.44), (4.47)(solid) and numerical

solution of (4.1)(dashed) using (4.48) where µ = 1.3, ϵ = 0.01, σ = 0.05 and

t̄ ≃ 33.34..

4.6 A Harvested Logistic Model with Exact Solu-

tion: Comparison with the Asymptotic Approx-

imations

In this section, we compare an exact solution of the problem (4.1) with the composite

approximations constructed in Section 4.4.

To do this, we consider a special case of the functions r(t1), k(t1) and h(t1), namely

h(t1) =
1

4σ
[1− (t̄1 − t1)] =

1

4σ
[1− ϵ(T − t)]

r(t1) = k(t1) = 1. (4.50)

Substituting (4.50) into (4.2) gives

δ(t1) = 1− 4σ h(ϵt) = t̄1 − t1 = ϵ(T − t). (4.51)

and applying the condition (4.4) gives

δ(t̄1) = 0 ⇔ t̄1 = t1 and δ′(t̄1) = −1 < 0.
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Thus the transition point occurs at t1 = t̄1 = ϵ T . Then, (4.1) becomes

dp(t, ϵ)

dt
= p(t, ϵ) (1− p(t, ϵ))− 1

4
[1− ϵ(T − t)], p(0, ϵ) = µ. (4.52)

4.6.1 The Exact Solution

We now solve (4.52) exactly. By putting

p(t, ϵ) =
1

2
+

ϕ′

ϕ
, (4.53)

where ϕ is a function of time t, substituting (4.53) into (4.52) gives

ϕ′′ =
ϵ

4
(T − t)ϕ. (4.54)

Letting

z =
( ϵ
4

)1/3
(T − t) (4.55)

converts the equation (4.54) for ϕ in terms of z as

d2ϕ

dz2
− z ϕ = 0. (4.56)

Equation (4.56) has the general solution

ϕ = d1Ai(z) + d2Bi(z) (4.57)

where d1 d2 are constants, and Ai(z), Bi(z) are Airy functions see [1].

This leads to

ϕ′

ϕ
= −

( ϵ
4

)1/3 d1 Ai′(z) + d2Bi
′(z)

d1Ai(z) + d2Bi(z)
. (4.58)

From (4.52) and (4.55), at t = 0 we have p(0) = µ and z(t = 0) =
(
ϵ
4

)1/3
T , this leads to

µ− 1

2
= −

( ϵ
4

)1/3 d1Ai′(z0) + d2Bi
′(z0)

d1Ai((z0) + d2Bi(z0)
, z0 =

( ϵ
4

)1/3
T (4.59)

and so,

d1 = ( ϵ
4
)1/3 Bi′(

(
ϵ
4

)1/3
T ) + (µ− 1)Bi(

(
ϵ
4

)1/3
T ) (4.60)
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and

d2 = −
[
( ϵ
4
)1/3 Ai′(

(
ϵ
4

)1/3
T ) + (µ− 1)Ai(

(
ϵ
4

)1/3
T )
]
. (4.61)

and so (4.53) gives

p(t, ϵ) = 1
2
− ( ϵ

4
)1/3

d1 Ai
′[
(
ϵ
4

)1/3
(T − t)] + d2 Bi

′[
(
ϵ
4

)1/3
(T − t)]

d1Ai[
(
ϵ
4

)1/3
(T − t)] + d2 Bi[

(
ϵ
4

)1/3
(T − t)]

. (4.62)

Thus, (4.62) provides the exact solution of (4.1) for the special case of the functions

defined by (4.50).

4.6.2 The Asymptotic Approximations

We now construct the composite approximation to the solution of the problem (4.52)

using the approximations of Section 4.4.

• Asymptotic Approximation in the Subcritical Region.

In this case where t < T , where T is transition point as discussed above. From (2.33), we

have

t0 =
2
3
ϵ1/2 [T 3/2 − (T − t)3/2], (4.63)

and so, 0 ≤ t0 ≤ ϵ1/2 T 3/2. Thus, the leading terms of subcritical harvesting expansion

(2.36) or (2.47) become

p(t0, t1) =
1
2

[
1 +

√
t̄1 − t1 tanh[

1
2
(t0 + c0)]

]
+O(ϵ) (4.64)

or

p0(t0, t1) =
1
2

[
1 +

√
t̄1 − t1 coth[

1
2
(t0 + c0R)]

]
+O(ϵ) (4.65)

where

c0 = 2arctanh

(
2µ− 1√

ϵ T

)
,

c0R = 2arccoth

(
2µ− 1√

ϵ T

)
, (4.66)
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with t0 given by (4.63). The common term of (4.29) becomes

C12(t1, t̄1) =
1
2
(1 +

√
t̄1 − t1)) +O(ϵ)

where τ = ϵ1/3(t− T ) and the transition solution given by (4.27) is

p(t, ϵ) =
1

2
+ ϵ1/3a

Ai′(a ϵ1/3(t− T ))

Ai(a ϵ1/3(t− T ))
+O(ϵ2/3) (4.67)

where a = −(1
4
)1/3.

Thus the uniformly valid solution (4.43) up to the transition becomes

p12(t, ϵ) =
1

2
+
[
1 +

√
ϵ t̄− ϵ t tanh[1

2
(t0 + c0)]

]
−(

ϵ

4
)1/3

Ai′(( ϵ
4
)1/3)[T − t]

Ai(( ϵ
4
)1/3)[T − t])

− 1
2

√
ϵ t̄− ϵ t. (4.68)

Alternatively, in the case of (4.44), we get

p12(t, ϵ) =
1

2
+
[
1 +

√
ϵ t̄− ϵ t coth[1

2
(t0 + c0R)]

]
−(

ϵ

4
)1/3

Ai′(( ϵ
4
)1/3)[T − t]

Ai(( ϵ
4
)1/3)[T − t])

− 1
2

√
ϵ t̄− ϵ t (4.69)

where t0 , c0 and c0R are given by (4.63) and (4.66) respectively.

• Asymptotic Approximation in the Supercritical Region:

In this case where t > T , using (4.50), (4.6) gives

t̃0 =
2
3
ϵ1/2 [(T − t)3/2] (4.70)

while the leading term supercritical harvesting expansion (4.5) becomes

p(t̃0, t) =
1
2

[
1− ϵ1/2 (t− T ) tan[1

2
(t̃0 −

π

2
)]
]
+O(ϵ), (4.71)

while again the solution in the transition region is as given by (4.67). The common terms,

(4.39), in this case are

C23(t, ϵ) =
1
2

[
1− ϵ1/2 (t− T ) tan[ζ − π

4
]
]
, (4.72)
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where

ζ =
t̃0
2
.

Thus the uniformly valid approximation in the supercritical region is

p23(t, ϵ) =
1

2
− (

ϵ

4
)1/3

Ai′(( ϵ
4
)1/3)[T − t]

Ai(( ϵ
4
)1/3)[T − t])

, for t ≥ T. (4.73)

Hence, for small ϵ, (4.68) or (4.69) and (4.73) provide approximate composition for the

population of (4.52) that move from subcritical to supercritical state respectively through

the transition point T for special parameters given by (4.50).

For particular values of parameters ϵ and initial condition µ of (4.52), Figure 4.16

displays both the exact solution (4.62) and additive composition of asymptotic approx-

imation of the subcritical region (4.68) that is moved to the asymptotic approximation

of the supercritical region (4.73) trough a transition point T = 40 for special parameters

given by (4.50) where ϵ = 0.05, µ = 0.2. These lines are visually identical.

For a different initial condition µ = 2, ϵ = 0.5 and same choices of (4.50), Figure 4.17

also indicates a very close agreement between the exact solution (4.62) and both uniform

approximate expansions (4.69) and (4.73) respectively.

4.7 Discussion

The calculations of this chapter show how the global multiscaling approach can be com-

bined with local asymptotic analysis at points where the former fails, to construct overall

representations of the evolving population. Even though the analysis has been carried out

in a specific case (i.e., a survival-extinction transition), the techniques are readily adapt-

able to other circumstances- e.g., extinction-survival. The comparisons with numerical

computations for the particular example chosen in Section 4.5 show excellent agreement

between the two methods. Moreover, the general uniform approximations (4.43, 4.44)
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Figure 4.16: Comparing the exact solution (4.62) (solid) with the asymptotic

approximations (4.68) and (4.73) (dotted) where ϵ = 0.05, µ = 0.2 and T = 40

(dashed vertical).
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Figure 4.17: The exact solution (4.62) (solid) and gathering the two asymp-

totic approximations (4.69) and (4.73)(dotted) where ϵ = 0.5, µ = 2 and

T = 20(Transition point).
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and (4.46, 4.47) are quite explicit, and may be used with any appropriate functions r, k

and h.

The example of Section 4.6 where an exact solution of the problem (4.1) can be found

for specific choices of r, k and h, further reinforces the value of these approximations. It is

clear from Figures 4.16 and 4.17 that there is excellent agreement between the asymptotic

expansion and the exact solution. This increases our confidence in the analysis.

Transitions in the harvesting model are being prepared for publication in Idlango et al

[36].
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Chapter 5

A Single Species Model Exhibiting

an Allee Effect

5.1 Introduction

In general, the Allee effect (see Gonzalez-Olivares, et al [22], Courchamp, et al. [17]) in

a single species population model can be simply described as the phenomenon where the

population grows faster when the species are at high population density than it would

if the population were at low population density. That is, the Allee effect reduces the

population growth at low densities.

While there is a range of single species population models that exhibit this effect, we

consider one here that is simple in structure, but which displays the Allee effect quite

clearly.

This model (see, for example, [17]) can be formulated as the initial value problem for

population P :

dP

dT
= RP

(
1− P

K

)(
P

M
− 1

)
, P (0) = P0, (5.1)

where R, K, M and P0 are positive constants, with P the population size at time t ≥ 0,

R the growth rate,K the carrying capacity, and M is the critical population size, 0 <
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Figure 5.1: Growth curves of Logistic model and Allee model

M < K.

This presents a modified form of logistic growth function by expressing the Allee

effect. In Figure 5.1 it is clear that, in the logistic model, for any initial population the

population endures to its carrying capacity K and the per capita population growth rate

is a maximum when P is small.

However, with the appearance of the Allee effect in (5.1) compared with logistic growth

term, Figure 5.1 shows that for any initial population above M , P0 > M the population

survives to K and encounters extinguishment when the population is below its critical

size, M . That is, the per capita growth rate is negative belowM and is positive otherwise.

However, when this model is applied to real world situations, the model parameters

R,K and M in (5.1) may not be constants, but may, in fact, be functions of time. Such

variation may naturally arise from varying environmental and/or physiological effects.

In such cases, (5.1) takes the form

dP

dT
= R(T )P

(
1− P

K(T )

)(
P

M(T )
− 1

)
, P (0) = P0, (5.2)

97



where now R(T ), K(T ) and M(T ) are positive real valued functions on T ≥ 0 satisfying

0 < M(T ) < K(T ) for all T ≥ 0. (5.3)

Following the approach to the harvesting problem of Chapter 2, we simplify the initial

value problem (5.2) and assume that R(T ), K(T ), M(T ) may be written in terms of

dimensionless functions r, k, m as

R(T ) = R0r(T/T
∗),

K(T ) = K0k(T/T
∗),

M(T ) = M0m(T/T ∗)

where R0, K0 and M0 are representative values of these functions and T ∗ is an assumed

common intrinsic time scale for the variation of R, K, M . Note that the parameters

R, K, M may vary on the same the time scale or possibly on different time scales. We

choose here the simplest case, where they have the same time scale.

With dimensionless time scale and population scale given by

t = R0T,

p = P/K0

respectively, we can rewrite (5.2) as

dp(t, ϵ)

dt
= r(

1

R0 T ∗ t)p(t, ϵ)

(
1− p(t, ϵ)

k( 1
R0 T ∗ t)

) (
α p(t, ϵ)

m( 1
R0 T ∗ t)

− 1

)
, p(0, ϵ) = µ. (5.4)

Thus we define ϵ = 1/(R0 T
∗) as a ratio of the intrinsic population variation time

scale, 1/R0, to T ∗. Then, (5.4) becomes

dp(t, ϵ)

dt
= r(ϵt)p(t, ϵ)

(
1− p(t, ϵ)

k(ϵt)

) (
α p(t, ϵ)

m(ϵt)
− 1

)
, p(0, ϵ) = µ, (5.5)

where α and µ are positive constant parameters, defined by

α = K0/M0, µ = P0/K0. (5.6)
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In (5.6) we assume that K0/M0 > 1, so that α > 1. Note that when any of R,K or M

is constant, its dimensionless counterpart is unity. Thus, if R(T ) is constant, r(ϵt) ≡ 1 in

the problem (5.5). Similarly for K(T ) or M(T ).

In terms of dimensionless quantities, the condition (5.3) becomes

0 < m(ϵ t) < αk(ϵ t) for all t ≥ 0. (5.7)

For general varying coefficients r, k and m, the problem (5.5) may not be solved exactly,

and must be solved using numerical techniques. However, where the time scale of variation

of these parameters is relatively large compared with p itself, i.e., ϵ is small, the problem

(5.5) involves two time scales; t, the normal time, and ϵt, the slow time. As in a parallel

analysis (see Chapter 2, [29]), we can apply a multiscaled perturbation method based on

these time scales to construct analytic approximations to the solutions of the problem

(5.5).

In the next section, we will investigate the basic dimensionless Allee model when the

parameters are positive constants. In this case, (5.5) is autonomous and separable, but

we show that we can construct an implicit representation for the exact solution for an

arbitrary µ, as well as expansions for the limiting states of this solution as t → ∞.

In subsequent sections, we use this analysis as a basis for a multitiming analysis of the

problem (5.5) as describe above, when the coefficients r, k and m are slowly varying.

5.2 Constant Model Parameters

In this section, we consider R, K, M as positive constants. Thus we we put r(ϵt) ≡

k(ϵt) ≡ m(ϵt) ≡ 1 and this gives the dimensionless initial value problem

dp

dt
= p(1− p)(α p− 1), p(0) = µ, (5.8)

where µ is a dimensionless initial population value, and α = K/M .
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Before we seek the solution of (5.8), let us look at the analysis of the critical points

p = 0, 1/α and 1 of the differential equation in (5.8). The stability of these points can be

determined by the stability index of this equation, that is

σ(p) = [2 (α+ 1)− 3α p] p− 1.

Thus, the critical point p = 0 is a stable state since σ(0) = −1 < 0, while σ(1) =

1 − α, α > 1, so that p = 1 is a stable state. However, since σ(1/α) = 1 − 1/α > 0,

p = 1/α is an unstable point.

Thus, the population described by (5.8) has stable equilibria at p = 0, p = 1 and an

unstable equilibrium at p = 1/α.

We note the initial value problem (5.8) cannot be solved explicitly, but an implicit

solution of (5.8) is given by(
p

µ

)α−1 (
1− p

1− µ

) (
α µ− 1

α p− 1

)α

= e(1−α) t, α > 1 (5.9)

The behaviour of the solution (5.9) is dependent on the value of µ. Thus, if the population

is initially in a stable state, i.e., µ > 1/α > 0, then p(t) survives to the limiting value of

the stable state 1 (i.e., p(t) → 1) from below when 1/α < µ < 1 and from above when

µ > 1 as t → ∞. However, in the case where 0 < µ < 1/α, the population dies out i.e.,

p(t) → 0 as t → ∞. The respective curves in Figure 5.2 illustrates these previous cases

of the solution (5.9) where α = 2 and µ = 0.2, 0.7, 2.0. For given values of t, µ, and α,

the solution of equation (5.9) (for p) is found using a root finding method.

5.2.1 The Behaviour of the Solution as t → ∞.

Now, from (5.9) as t → ∞, the term e(1−α)t, α > 1 on the right side of (5.9) tends to zero.

This allows us to represent the solution (5.9) as a power series in terms of the small term

e(1−α)t as t → ∞. Defining

p(t) = f0 + f1 e
(1−α) t + f2 e

2(1−α) t +O(e3(1−α) t), (5.10)
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Figure 5.2: Typical solutions for the system (5.8) as given by (5.9), for α = 2

and µ = 0.2, 0.7, 2.0.

substituting (5.10) into (5.9) and expanding in powers of e(1−α)t give the coefficients

fi, i = 0, 1, 2 . . . by equating like powers of e(1−α)t. These are

f0 = 0, 1, f1 = β, f2 =
2α− 1

α− 1
β2, . . . ,

where β is a real constant given by

β =

(
µ(α− 1)

αµ− 1

)α(
µ− 1

µ

)
, µ >

1

α
. (5.11)

By choosing f0 = 1, this gives the expansion (5.10) for p(t) when p(t) → 1 as t → ∞ by

p(t) = 1 + β e(1−α) t +
2α− 1

α− 1
β2 e2(1−α)t +O(e3(1−α)t). (5.12)

where β is given by (5.11).

We note that series (5.12), converges at a rate which is dependent on the value of α,

through the exponential terms.

Figure 5.3 shows a comparison between the expansion (5.12) and the solution of the

problem (5.8) given by (5.9) as t → ∞, for typical values of α = 1.5 and µ = 0.8, 1.2.
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Figure 5.3: The asymptotic expansion (5.12) (dotted) and the solution from

(5.9) (solid) where α = 1.5, µ = 0.8, 1.2, and t ≥ 4.

Since the expansion (5.12) is calculated for large t, we see that, from Figure 5.3, when t

is small, there is a difference between exact solution and asymptotic expansion; however

(as expected) we see that the exact solution is close to the approximate expansion (5.12)

as t increases.

By applying a similar analysis as above, but now in the case where p(t) → 0 as t → ∞,

we define p(t) as Taylor series by

p(t) = g0 + g1 e
−t + g2 e

−2t +O(e−3 t). (5.13)

resubstituting (5.13) into (5.9), expanding and equating like powers of e−t, we obtain the

coefficients g0, g1, . . . and the expansion (5.13) for p(t) then becomes

p(t) = δ e−t − (α+ 1)δ2 e−2t +O(e−3t), (5.14)

where δ is a positive constant given by

δ = µ

(
1− µ

(1− αµ)α

) 1
α−1

, µ <
1

α
. (5.15)
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Figure 5.4: Comparison of asymptotic expansion (5.14) (dotted) the solution

from (5.9) (solid) where α = 1.5, µ = 0.4 and t ≥ 3.

We note that in (5.14), the rate of convergence to zero is independent of α.

Figure 5.4 compares the exact solution (5.9) with the expansion (5.14) using the same

parameters as those of Figure 5.3, but now with µ = 0.4. Again, as in Figure 5.3, this

shows a small difference between both solutions for small t, but this disappears as time t

progresses.

5.3 The Slowly Varying Allee Model

As discussed previously in Section 5.1, from here on, we will consider the more general

case (5.5), where the parameters r, k and m show slow variation; i.e., ϵ is small. Thus, the

problem (5.5) now involves two time scales; a slow time, ϵt and a normal time t. As in a

similar discussion in the Chapter 2 - Section 2.2.1, and [26, 57], we will employ a multiscale

perturbation approach to construct approximate representations for the solutions of this

problem for small values of the parameter ϵ.
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Since the differential equation in (5.5) is now nonautonomous, the critical point anal-

ysis of the previous section no longer applies. However, we can expect that, for ϵ small,

solutions of (5.5) might tend to either zero (an extinguished solution) or k(ϵt) ( a sur-

viving solution to slowly varying limiting state) in some sense and not the other slowly

varying state m(ϵt)/α.

5.3.1 The Multiscale Equation

For the purpose of solving the problem (5.5), we reformulate the differential equation (5.5)

as a multiscale equation for small ϵ.

Referring to successful applications of a multi-scaling technique that are based on two

time scales ( see Chapter 2 - Section 2.2.1 , [40]), we aim to find an approximate solution

for (5.5) using an analogous method, by defining the normal time, t0 and slow time, t1,

as introduced in Chapter 1 by

t0 =
1

ϵ
g(t1) and t1 = ϵt, (5.16)

where g(t1) is a positive valued function on all t1 > 0 satisfying the same conditions as

discussed in Chapters 1

Following the approach of Chapter 2, we regard p(t, ϵ), the solution of (5.5), as a

function p̃(t0, t1, ϵ) of both t0 and t1, i.e.,

p̃(t0, t1, ϵ) ≡ p(t, ϵ).

From (5.16), by applying the chain rule and substituting into (5.5), we convert the differ-

ential equation in (5.5) to the multiscaled partial differential equation for p̃(t0, t1, ϵ)

g′(t1)D0 p̃+ ϵ D1 p̃ = r(t1) p̃

(
1− p̃

k(t1)

) (
α p̃

m(t1)
− 1

)
, p̃(0, 0, ϵ) = µ,

where D0 and D1 represent partial derivatives taken with respect to t0 and t1 respectively.

Note that (5.17) displays ϵ explicitly rather than implicity as in (5.5) and this allows us to
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employ a perturbation technique which constructs an approximate solution of (5.5) that

is valid for all t > 0.

5.3.2 Perturbation Analysis

We now express the unknown function p̃(t0, t1, ϵ) as a Poincaré expansion in ϵ, namely

p̃(t0, t1, ϵ) = p̃0(t0, t1) + ϵp̃1(t0, t1) + ϵ2p̃2(t0, t1) + . . . . (5.17)

Substituting (5.17) into (5.17), expanding in powers of ϵ and equating coefficients of like

powers of ϵ, give partial differential equations for p̃0 as

g′(t1)D0p̃0 = r(t1) p̃0

(
1− p̃0

k(t1)

)(
αp̃0
m(t1)

− 1

)
(5.18)

and for p̃1

g′(t1)D0p̃1 − r(t1)

[
2p̃0

(
αk(t1) +m(t1)

k(t1)m(t1)

)
− 1− 3 αp̃30

k(t1)m(t1)

]
p̃1 = −D1p̃0. (5.19)

The partial differential equation (5.18) may be solved as in Section 5.2 for p̃0(t0, t1) in

implicit form as(
p̃0

α p̃0 −m(t1)

)αk(t1)
m(t1)

(
1− k(t1)

p̃0

)
− A(t1) e

−γ(t1) t0 = 0, (5.20)

where A(t1) is an arbitrary function of t1 and

γ(t1) =
r(t1)

g′(t1)

(
αk(t1)

m(t1)
− 1

)
> 0. (5.21)

From (5.21), we see that for each t1 ≥ 0, e−γ(t1) t0 → 0 as t0 → ∞; and consequently,

either the population survives to limiting state, k(t1), that is p̃0(t0, t1) → k(t1) or goes to

extinction, that is p̃0(t0, t1) → 0.

We now consider the expansion behaviour of p̃0(t0, t1) for the survival situation (where

p0 > m(t1)/α) and the extinction situation (where p0 < m(t1)/α) as t0 → ∞, separately.
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5.3.3 The Survival Case

On considering solving (5.19) for p̃1(t0, t1), we note that the original multiscale equation

(5.17) and consequently, (5.19), are first order partial differential equations. In the usual

way for this process, (see [40, 26]), we seek only a particular solution p̃1 of (5.19); i.e., one

that doesn’t include any further arbitrary functions of t1. Clearly, if p̃0 is known explicitly,

the linear equation (5.19) for p̃1 can be easily solved to provide such a particular solution,

using an integrating factor. Unfortunately, here p̃0 is only known implicitly from (5.20).

So, this approach fails.

Here, we take an analogous approach to that of Section 5.2; i.e., we can find the

asymptotic expansion for p̃0 the implicit solution of (5.20) that tends to k(t1) (survives)

as t0 → ∞, in this more general case where the parameters have slow variations. We can

then use this expansion for large t0 to obtain an expression describing the behaviour of

p̃1(t0, t1) as t0 → ∞.

Following the procedure of Section 5.2.1, we express (5.20) in terms of the following

approximation

p̃0 = f0(t1) + f1(t1) e
−γ(t1) t0 + f2(t1) e

−2γ(t1) t0 +O(e−3γ(t1) t0),

as t0 → ∞ and equating like powers of e−γ(t1) t0 where, γ(t1) > 0, we evaluate the coeffi-

cients fi(t1), i = 0, 1 . . . , to obtain the expansion for p̃0(t0, t1) as t0 → ∞ in the form

p̃0(t0, t1) = k(t1) + B(t1)e
−γ(t1) t0 +O(e−2γ(t1) t0), (5.22)

where

B(t1) = A(t1) k(t1)

(
αk(t1)−m(t1)

k(t1)

)αk(t1)
m(t1)

. (5.23)

From (5.22), we see that the leading term of the expansion (5.17) of p̃0, for the solution

of (5.17) that tends to k(t1) as t0 → ∞ converges at the exponential rate, e−γ(t1)t0 ; and

we would expect that the solution p̃1 of (5.19) to show this rate of convergence too.
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Substituting leading terms of the approximate expansion for p̃0 given by (5.22) into

the differential equation (5.19) for p̃1 gives an approximate equation for p̃1 as

D0p̃1 −
r(t1)

g′(t1)

(
1− αk(t1)

m(t1)
+ . . .

)
p̃1 =

−D1

g′(t1)
[k(t1) +B(t1)e

−γ(t1) t0 + . . .]. (5.24)

Retaining these leading terms, and solving the resultant linear equation for p̃1 as t0 → ∞

gives

p̃1(t0, t1) =
k′(t1)

r(t1)(1− αk(t1)
m(t1)

)
− e−γ(t1)t0

g′(t1)
{B′(t1) t0 +B(t1)γ

′(t1)
t20
2
}+ . . . (5.25)

which is an expression as t0 → ∞ for p̃1 the solution of (5.17) that corresponds to the

solution of (5.17) that tends to k(t1) as t0 → ∞.

Noting from above that we expect convergence of p̃1 to its limit to be at least as fast

as p̃0 is to k, we see that from (5.25), in order to satisfy the condition of convergence at

a rate of e−γ(t1)t0 for p̃1, we need to eliminate the terms involving t0 and t20. Thus, we

choose

B′(t1) = 0 (5.26)

and

γ′(t1) = 0. (5.27)

The choice (5.26) and (5.23) leads to

A(t1) k(t1)

(
αk(t1)−m(t1)

k(t1)

)αk(t1)
m(t1)

= cs,

giving

A(t1) = cs as(t1), (5.28)

where

as(t1) =

[
k(t1)(

αk(t1)−m(t1)

k(t1)
)
αk(t1)
m(t1)

]−1

, (5.29)

with cs an arbitrary constant that depends on the initial condition. Here, subscript s

refers to the case where the solution of (5.5) survives; i.e., tends to k(ϵt) as t → ∞.
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The condition (5.27), leads us to choose γ(t1) = constant = 1, and so (5.21) gives

g′(t1) = r(t1)(
αk(t1)

m(t1)
− 1),

from which, with (5.16), we get

t0s =
1

ϵ

∫ t1

0

r(s)(
αk(s)

m(s)
− 1)ds, (5.30)

where the subscript s has the meaning as given above.

Applying the choices (5.16), (5.28), (5.30) for t1, A(t1) and t0s respectively, with

γ(t1) = 1 to (5.20), we arrive at a leading order approximation p0s(t, ϵ) to that solution

of the differential equation of (5.5) that tends to k(ϵ t) as t → ∞, represented implicitly

by

F (p0s, t)− cs as(t1) e
−t0s = 0, (5.31)

where

F (u, ϵ t) =

(
u

α u−m(t1)

)αk(t1)
m(t1)

(
1− k(t1)

u

)
. (5.32)

where t1 = ϵ t, and t0s is given by (5.30).

The expression (5.31) involves the constant cs which can be determined by applying

the initial condition of (5.5) at t = t0 = t1 = 0.

Applying this initial condition to (5.31) gives

cs = k(0) (1− k(0)

µ
)

(
1− m(0)

αk(0)

1− m(0)
αµ

)αk(0)
m(0)

(5.33)

where

µ >
m(0)

α
. (5.34)

Thus, (5.31) provides an implicit representation for p0s, a leading order approximation to

the evolving population ps(t, ϵ) in the surviving situation, when ϵ is small, and for arbi-

trary slowly varying model parameters r(ϵt), k(ϵt) and m(ϵt) satisfying (5.7) and initial
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population µ.

Note: When r, k and m are positive constants, so that r(ϵt) ≡ k(ϵt) ≡ m(ϵt) ≡ 1,

a straight forward calculation shows that the leading term approximation (5.31) with

(5.29) and (5.33) can be reduced to the implicit solution (5.9).

5.3.4 The Extinction Case

Again, for large t0, the task of determining the approximate expansion of p̃0 that tends to

zero as t0 → ∞ using (5.20) and applying this to obtain an expansion for p̃1 from (5.19)

as t0 → ∞ follows a similar process that led to the results obtained in Section 5.3.3.

The asymptotic expansion for the solution of (5.20) that tends to zero as t0 → ∞ ( p̃0

is extinguished) is

p̃0(t0, t1) = C(t1) e
− r(t1)

g′(t1)
t0 +O(e

−2
r(t1)

g′(t1)
t0), (5.35)

where

C(t1) =

((
−A(t1)

k(t1)

)m(t1)

(−m(t1))
αk(t1)

)1/(αk(t1)−m(t1))

, (5.36)

and A(t1) is an undetermined arbitrary function of t1.

As in Section 5.3.3, we expect from (5.35) that p̃0 and p̃1 for the expansion (5.17)

for the solution that tends to zero as t0 → ∞ displays a typical convergence rate of

e−(r(t1)/h′(t1))t0 .

Substituting the leading terms of (5.35) into (5.19), we obtain

D0p̃1 +

(
r(t1)

g′(t1)
+ . . .

)
p̃1 = −(g′(t1))

−1D1

[
C(t1)e

− r(t1)

g′(t1)
t0 + . . .

]
(5.37)

Solving (5.37) gives

p̃1(t0, t1) =
e
− r(t1)

g′(t1)
t0

g′(t1)
{C ′(t1) t0 −

(
r(t1)

g′(t1)

)′

C(t1)
t20
2
+ . . .} (5.38)
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which is an expression for p̃1 as t0 → ∞ corresponding to p̃0, the solution of (5.17) that

tends to zero as t0 → ∞.

However, as t0 → ∞, the appearance of terms C ′(t1) t0 and
(

r(t1)
g′(t1)

)′
C(t1)

t20
2

lead

p̃1(t0, t1) to converge slower to its limit compared to p̃0(t0, t1). Thus, to avoid this behavior

we need to remove these terms.

Thus, we set

C ′(t1) = 0 (5.39)

and (
r(t1)

g′(t1)

)′

= 0, (5.40)

and in a like manner to the process of Section 5.3.3, we obtain

A(t1) = −ce ae(t1), (5.41)

defining the arbitrary function A(t1), where

ae(t1) = −k(t1)(−m(t1))
−αk(t1)
m(t1) , (5.42)

and ce is an arbitrary constant.

Then (5.40) and (5.16) lead us to define the time scale t0e as

t0e =
1

ϵ

∫ t1

0

r(s)ds, (5.43)

where the subscript e denotes association with the solution of (5.5) that is extinguished;

i.e., tends to zero as t → ∞.

Similarly, the choices (5.16), (5.41), (5.43) for t1, A(t1) and t0 respectively, lead to a

leading order approximation p0e(t, ϵ) to that solution of (5.5) that tends to zero as t → ∞:

F (p0e, t) + ce ae(t1) e
−(

αk(t1)
m(t1)

−1)t0e = 0, (5.44)

where F (u, t) is given by (5.32). Substituting the initial condition (5.5) into (5.44) gives

ce = −(
µ

1− αµ
m(0)

)
αk(0)
m(0)

(
µ− k(0)

µk(0)

)
(5.45)
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where

µ <
m(0)

α
. (5.46)

Thus, (5.44) represents an implicit expression for p0e, the leading order approximation to

the evolving population in the extinguishing case, where constant ce is given by (5.45).

This is valid for small ϵ, and for arbitrary slowly varying model parameters r(ϵt), k(ϵt)

and m(ϵt) satisfying (5.7) and initial population µ.

Note: Again, when r, k and m are constants (r(t1) ≡ k(t1) ≡ m(t1) ≡ 1), a straight

forward calculation brings down the implicit solution (5.9) of the leading term approxi-

mation (5.44) with considering (5.42) and (5.45).

As we have noted above, the implicit expressions for leading term p0s and p0e, that

make it impossible to obtain explicit representations for higher order terms p1s and p1e.

However, from (5.22) and (5.25) we see that as t → ∞,

p0s → k(ϵt)

p1s →
k′(ϵt)

r(ϵt)(1− αk(ϵt)
m(ϵt)

)
; (5.47)

and so, as t → ∞

ps → k(ϵt) + ϵ
k′(ϵt)

r(ϵt)
(
1− αk(ϵt)

m(ϵt)

) + . . . . (5.48)

(5.35) and (5.38) give

pe → 0, as t → ∞. (5.49)

5.4 Comparison of the Implicit Expansions with Nu-

merical Solutions.

Although (5.31) and (5.44) are implicit approximate expansions for the solutions of (5.5),

their forms are relatively simple and can be compared with the results of numerical solu-

tions of (5.5), by choosing appropriately slowly varying functions r(ϵt), k(ϵt) and m(ϵt).

111



Because of the complexity of the expansions (5.31) and (5.43) we will not make the result

of subetituting the chosen forms of r, k and m explicit.

We thus introduce model parameters as periodic functions on a slow time ϵt (as used

in Figures 5.5-5.11) as

m(ϵt) = 1.0 + 0.05 sin(ϵt),

k(ϵt) = 1.0 + 0.13 sin(ϵt),

r(ϵt) = 1.0 + 0.01 sin(ϵt) (5.50)

with α = 3 and ϵ = 0.01.

Figure 5.5 shows the surviving case (5.31), and compares the leading term expansion

(5.31) with the numerical solution of the initial value problem (5.5) for a relatively short

period of time where µ satisfies the criterion (5.34)(i.e., µ > m(0)/α = 0.33). This clearly

displays the initial transient interval, where t0s is the dominate time scale, together with

slowly varying state corresponding to (5.44). It is clear that these solutions display a very

good agreement indeed.

In Figure 5.6, with the same choice (5.52) but for much a larger time interval, we

can see the agreement remains, with the periodic limiting state given by (5.48) where

r(ϵt), k(ϵt) and m(ϵt) are given by (5.52), well-developed.

Figures 5.7 and 5.8 show the situation for a different initial starting population sat-

isfies (5.34). Again, the leading term expansion (5.31) agrees well with the numerical

representation of (5.5) whether the time t is small or large.

Figure 5.9 makes similar comparisons for a range initial population values µ satisfies

(5.34); and, again, good agreement results.

Figure 5.10 shows the effects of increasing ϵ on the accuracy of our approximation

compared with the numerical result. It shows that agreement is very good up to ϵ = 0.5

which is probably not be regarded as small.

Figure 5.11 displays analogous results when the starting population µ holds satisfies
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Figure 5.5: The leading term approximation (5.31) (dotted curve) and the nu-

merical solution of (5.5) (solid curve) for a surviving population with r(ϵt), k(ϵt)

and m(ϵt) given by (5.52), and µ = 0.75.

the criterion (5.46) ( i.e., µ = 0.1 < m(0)/α = 0.33), and the leading term expansion is

that of the extinction situation (5.45) (where the population is declining to zero).
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Figure 5.6: The leading term approximation for a surviving population (5.31)

(dotted line) and the numerical solution (solid line) for the surviving population

case with the choices of Figure 5.5, but for large times t.

Figure 5.7: Evolution of the leading term approximation for a surviving pop-

ulation (5.31)(dotted) compared with the numerical solution (solid) of (5.52),

with µ = 1.14 for a small time period.
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Figure 5.8: The leading term approximation for a surviving population (5.31)

(dotted) compared with the numerical solution of (5.5) (solid) for data of Figure

5.7 and large times t.

Figure 5.9: The leading term approximation for a surviving population (5.31)

(dotted) compared with the numerical solution of (5.5) (solid) for data of Figure

5.7, but with different initial values µ = 0.5, 0.75, 1.25, 1.5.
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Figure 5.10: Evolution of a surviving population (5.31) (dotted) compared with the

numerical solution of (5.5) for data used in Figure 5.5, where ϵ = 0.05, 0.2, 0.5 in clockwise

order starting from the top left corner.
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Figure 5.11: Comparison of the leading approximation (5.44) (dotted) for

an extinguished population with the numerical solution of (5.5) (solid) for

r(ϵt), k(ϵt) and m(ϵt) as defined by (5.52) but now with µ = 0.1.

5.5 Transition Analysis

In the preceding sections, we have constructed leading order approximations for the so-

lutions of the problem (5.5) when the model parameters r, m and k are slowly varying;

i.e., ϵ, the ratio of time scales, is small.

Using a multiscaling method, we found leading order expressions for the surviving and

extinguishing solutions of (5.5) when the condition (5.7) holds. In particular, we found

that the surviving population, approximated by ps defined implicitly in (5.31), tended to

a limiting value given by (5.48). However, as (5.48) shows, in any neighborhood of any

point t̄1 where

αk(t̄1)−m(t̄1) = 0, t̄1 = ϵt̄ (5.51)

disordering will occur in this expansion, and the limiting state (5.48) fails to represent the

evolving surviving population. i.e., at points t1 where αk(t1) −m(t1) = O(ϵ) the second
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term in (5.48) becomes comparable with the leading term. Although (5.48) represents

a limiting state, it is clear that the same would occur in the full expansion representing

the surviving population on t ≥ 0. (Recall that the next term, ϵp̃1 in (5.17) could not be

calculated explicitly on t ≥ 0. However, this limiting problem points to a similar failure

of any overall expansion.)

Equation (5.51) will certainly hold at a point t = t̄ for which

0 <
m(ϵt)

α
< k(ϵt) for 0 ≤ t < t̄, (5.52)

and

0 < k(ϵt) <
m(ϵt)

α
for t > t̄. (5.53)

At such points, t = t̄, termed transition points, the roles of k(ϵt) and m(ϵt) are inter-

changed. Up to t = t̄, one solution of (5.5) tends to a neighborhood of k(ϵt); but beyond

t = t̄, it may tend to m(ϵt)/α, or may decay to zero. This depends critically on the nature

of the solution transition through t = t̄. Thus, a local analysis of the solutions of (5.5) in

a neighborhood of any transition point is required. In what follows, we consider the case

where there is a single transition point t̄1 on t̄ > 0, so that (5.52) and (5.53) apply.

To analyse the transition behaviour of (5.5) and to simplify the calculation, we consider

the special case when r(t1) ≡ m(t1) ≡ 1 (i.e., R(T ) and M(T ) are constants) and k(t1) is

a slowly varying function.

Then, (5.5) becomes

dp(t, ϵ)

dt
= p

(
1− p

k(t1)

)
(α p− 1) ; p(0, ϵ) = µ, (5.54)

while (5.52) and (5.53) become

0 <
1

α
< k(ϵt) for 0 ≤ t < t̄ (5.55)

and

0 < k(ϵt) <
1

α
for t > t̄. (5.56)
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Further, we impose the condition that

k′(ϵ t̄) < 0; (5.57)

i.e., the zero of α k(ϵt)− 1 is simple.

5.5.1 Subregions

Now, as in Chapter 4, in dealing with this situation, we define the following three time

subregions of t ≥ 0:

• In Region 1 (as discussed previously in Section 5.3.3) where the condition (5.55)

holds, the approximate expansion of the solution (5.5) is represented to leading

order by the leading term p0s, represented implicitly by (5.31), that tends to the

limiting state (5.48).

• Region 2 is a transition region surrounding t̄1 = ϵt̄ where the condition k(ϵt̄) = 1/α

holds.

• In Region 3 where t1 > t̄1 (t > t̄), (5.56) holds and 1/α and k(t1) exchange roles

(1/α ↔ k(t1)) in (5.31), while from (5.30), the initial point of t̃0s in this region is

taken to be t̄1, so that, in Region 3,

t̃0s =
1

ϵ

∫ t1

t̄1

(
1

α k(s)
− 1

)
ds. (5.58)

Thus the leading term of the expansion for the solution in Region 3 becomes

F (p0s, t)−D ãs(t1) e
−t̃0s = 0, (5.59)

where

F (p0s, t) =

(
p

α(p− k(t1))

) 1
αk(t1)

(
1− 1

αp

)
, (5.60)

ãs(t1) =

 1

α

(
1− α k(t1)

1/α

) 1
αk(t1)

−1

(5.61)

and D is an undetermined constant.
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5.5.2 Solution in the Transition Region

Following the procedure of Section 4.3, , we introduce a new local variable τ defined by

t1 = t̄1 + ϵστ, −∞ < τ < ∞. (5.62)

where σ is positive and unknown constant. Thus the solution of (5.54) (in terms of τ)

has the form

p̃(τ, ϵ) ≡ p(t̄1 + ϵστ, ϵ). (5.63)

At the transition point t̄1, we have

k(t̄1) =
1

α
and k′(t̄1) < 0. (5.64)

and so

k(t1 + ϵστ) =
1

α
+ ϵστ k′(t̄1) + . . . . (5.65)

Substituting (5.63) and (5.65) into (5.54) and expanding in powers of ϵ, the differential

equation (5.54) in terms of τ becomes

dp̃

dτ
= −ϵσ−1p (1− αp̃)2 − ϵ2σ−1α2 p̃2 (1− αp̃) k′(t̄1) τ +O

(
ϵ3σ−1

)
, (5.66)

where σ > 0. Since there is no balancing of powers of ϵ that can determine the value of

σ in (5.66), we thus reconsider the limiting state (5.48) in Region 1 in terms of τ using

(5.62) and (5.64), so we have

p(τ, ϵ) → 1

α
+ ϵσk′(t̄1)τ − ϵ1−σ 1

ατ
+O(ϵ). (5.67)

Thus (5.67) shows that the transition equation could be in the form

p(τ, ϵ) =
1

α
+ ϵσu0(τ) + . . . (5.68)

Substituting (5.68) into (5.66) and balancing powers of ϵ for both sides, we choose

σ =
1

2
, (5.69)
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and so we obtain the equation for u0 as

du0

dτ
= αu0(τ) (k

′(t̄1)τ − u0(τ)) . (5.70)

Solving (5.70) for u0(τ) gives

u0(τ) =

√
−2 α k′(t̄1) e

αk′(t̄1) τ2/2

α
√
π erf

(
1
2

√
−2α k′(t̄1)τ

)
+ C

√
−2α k′(t̄1)

; k′(t̄1) < 0 (5.71)

where

erf(x) =
2√
π

∫ x

0

e−t2dt,

is the error function, (see [1]) and C is a constant. Expanding (5.71) as τ → −∞ and

comparing with (5.67) (where σ = 1/2), shows there is matching between expansions in

Regions 1 and 2 if we choose

C =
α
√
π√

−2 α k′(t̄1)
.

Thus with this choice, the approximate leading terms of the expansions for the transition

region solution (5.68) become

p(τ, ϵ) =
1

α
+ ϵ1/2

√
−2α k′(t̄1) e

αk′(t̄1) τ2/2

α
√
π
(
erf
(

1
2

√
−2 α k′(t̄1)τ

)
+ 1
) +O(ϵ), k′(t̄1) < 0, (5.72)

and so for large and negative τ, (i.e.,τ → −∞) the expansion of the solution (5.72) that

represents the common part in the overlap between Region 1 and Region 2 is

C1,2(τ, ϵ) =
1

α
+ ϵ1/2k′(t̄1)τ +O(ϵ), k′(t̄1), τ < 0. (5.73)

Now we look at the matching of the expansions in Regions 2 and 3. The transition

from Region 2 to Region 3 corresponds to the considering large and positive values of τ .

From (5.72), the asymptotic series expansion of the O(ϵ1/2) term for large τ gives

lim
τ→∞

√
−2 α k′(t̄1)

α
√
π

 e1/2αk
′(t̄1) τ2(

erf
(

1
2

√
−2α k′(t̄1)τ

)
+ 1
)
 =

√
−2α k′(t̄1)

α
√
π

(
0

1 + 1

)
= 0.

Thus, as τ → ∞ the transition solution (5.72) tends to

p̃(τ, ϵ) → 1

α
. (5.74)
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Now we consider the leading term of the surviving solution (5.31) in the overlap region

between Regions 2 and 3.

For small ϵ where the condition (5.56) holds, and by considering (5.59) and (5.58) and

expanding for small ϵ and integrating, we obtain

t̃0s = −1

2
α k′(t̄1) τ

2, k′(t̄1) < 0. (5.75)

Substituting (5.64) and (5.75), the leading order (5.59) becomes

F (p0s, t)−D ãs(t1) e
1
2
αk′(t̄1)τ2 = 0, k′(t̄1) < 0, (5.76)

where 0 < k(t1) < 1/α and F (p0s, t) and ãs(t1) defined by (5.60) and (5.61) respectively.

Now, for large τ the term e
1
2
αk′(t̄1) τ2 in (5.76) converges to zero and by following the

procedure used in Section 5.3.3, and also considering that k(t1) switches with m(t1)/α (or

particularly in this case k(t1) ↔ 1/α), we see that (5.22) becomes

p̃0s(τ, ϵ) =
1

α
+ D ãs(t1) e

1
2
αk′(t̄1) τ2 +O(eαk′(t̄1) τ2), (5.77)

Rewriting (5.77) in terms of τ using (5.62) and (5.65) gives

p̃0s(τ, ϵ) =
1

α
+ D ãs(t̄1 +

√
ϵτ) e

1
2
αk′(t̄1) τ2 (5.78)

expanding (5.77) for small ϵ gives

p̃0s(τ, ϵ) →
1

α
+ D ãs(t̄1) e

1
2
αk′(t̄1) τ2 +O(

√
ϵ) . . . . (5.79)

By comparing (5.79) with (5.74), there is only a common term 1/α if we choose

D = 0. (5.80)

Thus for this particular case, the expansion solution for Region 3 is given, to leading

order, by

p̃0s(τ, ϵ) =
1

α
, (5.81)
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and the common part is

C23 =
1

α
. (5.82)

It is important to note that the choice D = 0 in (5.80) means that the implicit leading

order approximation in Region 3, given by (5.57) contains no t̃0s dependence; i.e., the p0s

obtained is completely slowly varying to the level of approximation considered. Thus, the

slowly varying transition solution continues on to represent the evolving population. This

phenomenon has been noted in an analogous case [30]; and, even with an improved level

of approximation, ([56]), the transition behaviour was found to have no marked effect.

5.5.3 A Uniform Approximation

Following the same technique used in Section 4.4, [30, 31] we aim to create a composite

expansion that describes the behaviour of the solution throughout three Regions R1, R2

and R3. That is achieved by adding valid expansions in Regions 1 and 2 or Regions 2 and

3 then subtracting the common term.

For the interval [0, t̄1], the uniform valid solution is

p12 = p0s + ϵ1/2
√
−2α k′(ϵt̄) e1/2αk

′(ϵt̄) τ2

α
√
π
(
erf
(
1/2
√
−2α k′(ϵt̄)τ

)
+ 1
)

−ϵ1/2 (k′(ϵt̄)τ) (5.83)

where τ = ϵ1/2(t− t̄) and from (5.32) p0s satisfies(
p0

α p0 − 1

)αk(ϵt) (
1− k(ϵt)

p0

)
− A(ϵt) e−t0 = 0.

From (5.72) and (5.81), (5.82) the uniform valid expansion for interval [t̄1,∞] in this

particular case is represented only by the transition solution (5.72) that is

p23(τ, ϵ) =
1

α
+ ϵ1/2

√
−2α k′(ϵt̄) e

1
2
αk′(t̄1) τ2

α
√
π
(
erf
(

1
2

√
−2α k′(ϵt̄)τ

)
+ 1
) +O(ϵ), k′(ϵt̄) < 0. (5.84)

Figures 5.12 and 5.13 display the behaviour of the union of the two uniformly valid
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Figure 5.12: Plot of the composite expansion (5.83) (dotted) and the numerical

solution of (5.54)(solid), where k(ϵt) = 0.2 + (1 + eϵt)−1 with µ = 0.4, ϵ =

0.01, α = 3 and t̄ ≈ 187.
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Figure 5.13: Plot of the composite expansion (5.84) (dotted) and the numerical

solution of (5.54)(solid) using the same choice of k(t1) as in Figure 5.12, where

µ = 1.2, ϵ = 0.05, α = 3 and t̄ ≈ 37 µ = 1.2.
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expansions (5.83) and (5.84) through the transition point where t̄1, compared with the

numerical solution of (5.54) with considering two different initial values µ = 0.4, 1.2 and

different values of ϵ. It is shown a very good agreement between the numerical solution

and the uniform valid solutions through the transition point.

5.6 Discussion

With the values (5.33), (5.45) for the constants cs and ce, (5.31) and (5.43) provide implicit

representations for p0s and p0e, leading order approximations to the evolving populations

ps and pe in the surviving and extinguishing situations, respectively, when ϵ is small, and

for arbitrary slowly varying model parameters r(ϵt), k(ϵt) and m(ϵt) satisfying (5.7) and

initial population µ.

Although these approximations are represented as implicit functions, their form is

relatively simple and they are easily represented graphically (and compared with the

results of using a numerical ODE solver) using such packages as Maple or Mathematica.

The comparisons with numerical solutions in Section 5.4 show that in three specific cases,

these approximations are very good indeed.

Unfortunately, in contrast to the harvesting problem of Chapter 2 the implicit repre-

sentations for p0s and p0e make it impossible to obtain explicit representations for their

higher order counterparts p1s and p1e. Our only higher order expansion is for the surviving

population;

ps → k(ϵt) + ϵ
k′(ϵt)

r(ϵt)
(
1− αk(ϵt)

m(ϵt)

) + . . . (5.85)

as t → ∞, and, trivially, for the extinguished population, as t → ∞

pe → 0. (5.86)

Regardless of this, the limiting form (5.85) enables us to note that the surviving population

tends to the carrying capacity k(ϵt) as t → ∞. Moreover, in view of (5.7), this approaches
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k from the below when k′(ϵt) < 0 and above when k′(ϵt) < 0. The limiting form (5.86)

just demonstrates the exponential decay of the extinguished population.

The implicit leading order approximations (5.31) and (5.43) do provide much more

information about the behaviour of the populations in the initial “transient” region, where

t0 variation dominates. The comparisons of Section 5.5, where the involved parameters

k(ϵt) and m(ϵt) interchange roles (in a particular case), demonstrate how this multiscaling

analysis can be coupled with local asymptotic analysis to obtain a representation of the

evolution of the population throughout the transition process. Thus, they reflect the

approach to such transitions as are considered in Chapter 4. Again, the results, as shown

in Figures 5.12 and 5.13 show the very good agreement between the asymptotic results

and the numerical solutions.

The calculations of Section 5.3 have been published in Idlango et al [39].
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Chapter 6

A Single Species Logistic Model

Subject to Saturating Holling II

Harvesting

6.1 Introduction

In this chapter, we consider a single species logistic population model that is harvested at

a rate determined by a Holling type II functional. Mathematically, this can be expressed

as an initial value problem for the population P (T ) at time T ≥ 0:

dP

dT
= RP

(
1− P

K

)
− HP

A+ P
, P (0) = P0, (6.1)

where R,K, H, A and P0 are positive constants. Note that the first term on the right

hand side represents logistic growth with R the growth rate and K the carrying capacity;

while the term HP/(A+ P ) is a Holling type II function harvesting term, that increases

monotonically with P to a maximum (‘saturation’) value of H [34],(see Figure 6.1). Here,

H is the maximal rate of harvesting, and A is the half capturing saturation constant.

When there is no harvesting (i.e., H = 0), the differential equation of (6.1) reduces to
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that of simple logistic growth. Note that the harvesting term might also be interpreted

as predation, with a predation rate given by HP/(A+ P ).

However, in reality these parameters may actually change as time changes, as a result

of surrounding environmental variations. In particular, they may vary slowly with time.

Therefore, in this section, we reconsider the problem and investigate the effect of slow

parameter variation.

Then, the initial value problem (1.4) is replaced by

dP

dT
= R(T )P

(
1− P

K(T )

)
− H(T ) P

A(T ) + P
, P (0) = P0, (6.2)

where R(T ), K(T ), H(T ) and A(T ) are positive functions of T on T ≥ 0.

6.2 Dimensionless Model

We begin by converting the problem (6.2) to a dimensionless form. To express (6.2) in

dimensionless form we consider that the parameters above may be expressed in the form

R(T ) = R0 r(T/T
∗),

K(T ) = K0 k(T/T
∗),

H(T ) = H0 h(T/T
∗),

A(T ) = A0 a(T/T
∗),

t = R0T,

P = A0 p,

where R0, K0, H0 and A0 represent characteristic values of these functions and T ∗ is a

time scale for variation of these parameters, assumed the same for all. This gives the

problem (6.2) as

dp

dt
= r(ϵ t)p

(
1− p

η k(ϵ t)

)
− σh(ϵt)

p

a(ϵ t) + p
,

p(0, ϵ) = µ, (6.3)
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where ϵ = 1/(R0 T
∗) is the ratio of the intrinsic population variation time scale, 1/R0, to

T ∗, while σ, η and µ are constant positive dimensionless parameters, defined by

σ =
H0

R0 A0

, η =
K0

A0

µ =
P0

A0

. (6.4)

6.3 The Constant Parameter Model

Here, we consider the situation where R, K, H and A are positive constants, which leads

to writing r(ϵt) ≡ k(ϵt) ≡ h(ϵt) ≡ a(ϵt) ≡ 1. This gives us the dimensionless problem

dp

dt
= p

(
1− p

η

)
− σ

p

1 + p
, p(0) = µ, (6.5)

which involves three constant positive dimensionless parameters; η, σ and µ.

Here, we can see that as p becomes large (that is, p ≫ 1 or P ≫ A), the harvesting factor

tends to a constant; i.e.,

lim
p→∞

σ
p

1 + p
= σ.

However, when p ≪ 1 (or P ≪ A) the value of this function approaches σ p and the

harvesting is now a function of the current population; i.e., it is density dependent. Figure

6.1 displays the behaviour of this function.

Now, before we investigate the solutions of (6.5), we consider the properties of the

critical points (CPs) of the differential equation in (6.5).

6.3.1 Critical Points and Stability

To study the critical points (CPs) of (6.5), we first find these points by setting the right

hand side of the differential equation in (6.5) to zero, that is, we set

F (p) = p

(
1− p

η

)
− σ

p

1 + p
= 0. (6.6)

The stability index is given by

F ′(p) =

(
1− 2 p

η

)
− σ

(1 + p)2
. (6.7)
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Figure 6.1: Plot of the harvesting function σ p
1+p

.

Equation (6.6) may be written as

pG(p) = 0 (6.8)

where

G(p) = 1− p

η
− σ

1 + p
; (6.9)

while (6.7) becomes

F ′(p) = pG′(p) +G(p). (6.10)

So, CPs of (6.5) are p = 0 or points p > 0 where G(p) = 0, i.e., points where the line

1− p

η
(6.11)

intersects the hyperbola

σ

1 + p
. (6.12)

Now, from (6.10),

F ′(0) = G(0) = 1− σ
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so the CP p = 0 which exists and is real for all σ > 0, is unstable when 0 < σ < 1, and

stable if σ > 1.

For CPs p > 0 given by intersections of (6.11) and (6.12), we have G(p) = 0 and, for such

points,

F ′(p) = pG′(p)

and so, at such points (when they occur), the sign of F ′(p) is given by that of G′(p); i.e.,

the sign of {
slope of line 1− p

η

}
−
{
slope of hyperbola

σ

1 + p

}
. (6.13)

From the above, nonzero CPs; i.e., nonzero solutions of (6.6) are given by

p = Q1 =
1
2

(
η − 1−

√
(η + 1)2 − 4 η σ

)

p = Q2 =
1
2

(
η − 1 +

√
(η + 1)2 − 4 η σ

)
, (6.14)

where the quantity under the square root is positive if σ < (η+1)2

4 η
and then Q2 > Q1

and both are real. As we have noted above, the intersections between the straight line

(1−p/η) and hyperbola σ/(1 + p) will determine the critical points and their nature. For

example, in Figure 6.2, we can see that there may be one or two nonzero critical points,

depending on the values of η and σ. When there are two, with Q1 < Q2, the criterion

(6.13) shows that Q1 is unstable.

To get more insight, we discuss the stability boundary of CPs. This can be obtained from

(6.6) and (6.7) as the solution of the simultaneous nonlinear equations(
1− p

η

)
=

σ

1 + p
, (6.15)(

1− 2p

η

)
=

σ

(1 + p)2
. (6.16)

Solving (6.15) and (6.16) for η and σ in terms of p gives

η = 1 + 2 p, (6.17)
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Figure 6.2: The graphs of 1− p/η and σ/(1+ p) for various values of η and σ.
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Figure 6.3: Plot of boundaries of parameter σ as defined by (6.19).

σ =
(1 + p)2

1 + 2 p
. (6.18)

Substituting (6.17) into (6.18) gives the stability boundary of CPs in the (η, σ) plane as

σ =
(1 + η)2

4η
. (6.19)

By considering p = 0 as one of the equilibria, the stability index of other points Q1, Q2

given by (6.14) where (Q2 > Q1) can be detailed as follows:

[1 ]. when

1 < σ <
(η + 1)2

4η
while η > 1, (6.20)

Q1, Q2 are positive equilibria. Applying the condition (6.20), gives F ′(Q1) > 0

and F ′(Q2) < 0 and so Q1 is an unstable point and Q2 is a stable point. Thus,

populations having starting population µ < Q1 will tend to extinction as t → ∞;

while those with µ > Q1 will tend to the limiting population Q2; they will survive.

[2 ]. when

σ <
(η + 1)2

4η
and η < 1 (6.21)
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the CPs Q1, Q2 are real and negative .

[3 ]. when

σ >
(η + 1)2

4η
and η > 0 (6.22)

then Q1, Q2 are complex. There is no stable nonzero equilibrium and the value of σ

(number of predators) is sufficiently large to force the population p into extinction.

[4 ]. when η = σ = 1 then p = Q2 = Q1 = 0.

[5 ]. when

0 < σ ≤ 1, η > 0 (6.23)

then p = Q2 is positive and stable, while p = Q1 is negative and stable. In this case,

all populations tend to the limiting population Q2 > 0.

This analysis, and Figure 6.3 in particular, make it clear that there are a range of ultimate

states for the solutions of (6.3), depending on the values of η and σ. Holding η constant

(i.e., holding the ratio K0/A0 fixed) constitutes a vertical line in Figure 6.3; and allowing

σ to increase from zero takes us through a range of possible end-states for these solutions.

Thus, fixing η and letting σ increase leads us through ‘survival’ states, where 0 < σ <

1, and the population tends to the state Q2, and to ‘survival’ and ‘extinction’ states,

1 < σ < (η + 1)2/4η, where Q2 and the zero state p = 0 are stable options. Finally, for

σ > (η + 1)2/4η, only the zero state p = 0 is available, and extinction always occurs.

Analogous behaviour occurs when η > 1.

For particular situation where η = 1 (K0 = A0), there is one basic transition, from survival

to Q2 in 0 < σ < 1 and extinction to zero in σ > 1.

In the following sections, we consider this situation; i.e., we set η = 1. This simplifies

the analysis, somewhat. Thus, the problem (6.5) becomes

dp

dt
= p (1− p)− σ

p

1 + p
, p(0) = µ, (6.24)
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Figure 6.4: Plot of subcritical exact solution for (6.24) as given by (6.25),

where σ = 0.5 and µ = 0.1, 0.5, 1.

6.3.2 The Implicit Solution for the Subcritical Case: 0 < σ < 1

The initial value problem (6.24) cannot be solved explicitly, so we solve it in implicit form

as (
p

µ

) −2
1+Q

(
p−Q

µ−Q

) (
p+Q

µ+Q

) 1−Q
1+Q

= e−2 1−σ
1+Q

t, (6.25)

where Q is a constant, given by

Q =
√
1− σ. (6.26)

Figure 6.4 indicates the behaviour of the exact solution (6.25) for a range of initial values

µ = 0.1, 0.5, 1 when σ = 0.5 < 1. Here, the solution for any initial value below Q

(µ = 0.1, 0.5) or the solution for initial values above Q (µ = 1) each converge to the

stable equilibrium Q as expected.
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6.3.3 Behaviour of the Subcritical Solution as t → ∞

Here, we parallel similar analysis used in Chapter 5, Section 5.2. As t → ∞, the term

e−2 1−σ
1+Q

t on the right side of (6.25) tends to zero. Hence, we propose an approximate

expansion for the solution (6.25), when the population survives to the limiting state, as

t → ∞, as a series in terms of power of e−2 1−σ
1+λ

t, in the form

p(t) = f0 + f1 e
−2 1−σ

1+Q
t +O(e−4 1−σ

1+Q
t). (6.27)

Substituting (6.27) into (6.25), and expanding in powers of e−2 1−σ
1+Q

t and equating like

powers give the coefficient f0 = Q.

Substituting f0 = Q into (6.27) to evaluate the other coefficients, we obtain the

expansion for p(t) as p(t) → Q as t → ∞, as

p(t) = Q+ (µ−Q)

[(
µ

Q

)2(
2Q

µ+Q

)1−Q
] −1

1+Q

e−2 1−σ
1+Q

t +O(e−4 1−σ
1+Q

t). (6.28)

As is shown in Figures 6.5 and 6.6, the expansion (6.28) of the surviving population

that tends to a limiting state is in good agreement with the numerical solution of (6.24)

only for large t. This numerical solution was obtained by using a Runge-Kutta-Fehlberg

fourth-fifth order method with degree four interpolant.

6.3.4 The Implicit Solution of the Supercritical Case: σ > 1

Again, the initial value problem (6.24) can be solved implicitly as(
p2

p2 + σ − 1

)
eω(p) − c e−2 (σ−1) t = 0 (6.29)

where

ω(p) = 2
√
σ − 1 arctan

(
p√
σ − 1

)
(6.30)

and c is given by

c =
µ2

µ2 + σ − 1
eω(µ). (6.31)
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Figure 6.5: The subcritical asymptotic expansion (6.26)(dotted ) with numer-

ical solution of (6.24) (solid line) where σ = 0.5 and µ = 0.1, t ≥ 5.

Figure 6.6: The subcritical asymptotic expansion (6.16)(dotted line) with

numerical solution of (6.24) (solid line) where σ is as in Figure 6.5 and µ =

1, t ≥ 1.
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Figure 6.7: Plot of exact supercritical solution (6.29), where σ = 1.5 and

µ = 0.5, 1.

In Figure 6.7, where σ = 1.5 > 1, the harvesting is supercritical. It can be seen that

for the values of µ = 0.5, 1, populations always die out.

Similarly, we can find the approximate expansion for p(t) when p(t) → 0 (dies out) as

t → ∞ by defining

p(t) = f0 + f1 e
−(σ−1) t +O(e−2 (σ−1)t).

Evaluating the coefficients fi, i = 0, 1, 2 . . . gives the expansion for p(t) as p(t) → 0 as

t → ∞, in the form

p(t) = (c(σ − 1))1/2 e−(σ−1) t + c(σ − 1) e−2 (σ−1) t +O( e−3(σ−1) t), (6.32)

where c is given by (6.31). Figure 6.8 exhibits a comparison of the numerical solution

with this approximate expansion in the extinction situation. It is clear that there is a

close agreement as p(t) → 0.
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Figure 6.8: The asymptotic expansion (6.32)(dotted line) for supercritical

behaviour and the numerical solution of (6.5) (solid line) where σ = 1.5 and

µ = 0.5, t ≥ 14.

6.4 Slowly Varying Model Parameters

In previous sections, we have analysed the basic model with constant parameters.

Here, from (6.3) and for simplicity, we assume that only the harvesting rate is varying

slowly on a time scale T ∗, i.e., (r(ϵ t) ≡ k(ϵ t) ≡ a(ϵ t) ≡ 1). Further, we assume η = 1 as

in the constant coefficient case.

Thus, (6.3) becomes

dp

dt
= p (1− p)− σh(ϵt)

p

1 + p
,

p(0, ϵ) = µ. (6.33)

Note that the differential equation in (6.33) is in a form such that an approximate method

such as the multi-scaling technique can be applied to yield an approximate solution.

As discussed in previous sections, in what follows our analysis will be separated into two

139



distinct cases

when 0 < σ h(t1) < 1 for all t1 ≥ 0; (6.34)

termed the subcritical surviving case; and

when σ h(t1) > 1 for all t1 ≥ 0; (6.35)

termed thesupercritical case.

6.4.1 The Multiscale Equation

We now consider the generalized problem (6.33) where h is a slowly varying function of

t, corresponding to a small positive ϵ.

While t and ϵt can be viewed as two possible time scales for the problem (6.33), to

be more general we reconsider the slow time, t1 = ϵt and the normal time, t0 as given in

Chapter 1 by (1.14). We now regard p(t, ϵ), the solution of (6.33), as a function p̃(t0, t1, ϵ)

of both t0 and t1, that is p̃(t0, t1, ϵ) ≡ p(t, ϵ). Applying the chain rule gives

dp̃

dt
= g′(t1)D0p̃+ ϵD1p̃. (6.36)

Substituting (6.36) into (6.33), gives the multiscaled equation:

g′(t1)D0p̃+ ϵD1p̃ = p̃ (1− p̃)− σ h(t1)
p̃

(1 + p̃)
, (6.37)

for the unknown function p̃(t0, t1, ϵ), where D0 and D1 denote partial derivatives taken

with respect to t0 and t1. Note that ϵ is displayed explicitly in (6.37) rather than implicitly

as in (6.33) and by following the same strategy as in previous chapters we employ a

perturbation technique to approximate the solution of (6.33) that is valid for all t > 0.

In terms of p̃, the initial condition p(0, ϵ) = µ becomes

p̃(0, 0, ϵ) = µ. (6.38)
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6.4.2 Perturbation Analysis

Defining p̃(t0, t1, ϵ) as a Poincaré expansion in ϵ gives

p̃(t0, t1, ϵ) = p̃0(t0, t1) + ϵp̃1(t0, t1) + ϵ2p̃2(t0, t1) + . . . . (6.39)

Substituting (6.39) into (6.37), expanding in powers of ϵ and equating coefficients of like

powers of ϵ yields a non-linear partial differential equation for p̃0(t0, t1) as

g′(t1)D0p̃0 = p̃0 (1− p̃0)− σ h(t1)
p̃0

(1 + p̃0)
, (6.40)

and linear partial differential equation for p̃1(t0, t1) as

g′(t1)D0p̃1 −
(
1− 2p̃0 −

σ h(t1)

(1 + p̃0)2

)
p̃1 = −D1p̃0. (6.41)

Solving (6.40) gives the implicit solution for p̃0(t0, t1) as

p̃
−2

1+Q(t1)
0 (p̃0 −Q(t1)) (p̃0 +Q(t1))

1−Q(t1)
1+Q(t1) − A(t1) e

−β(t1) t0 = 0, (6.42)

where A(t1) is an arbitrary function depending only on t1,

β(t1) =
2

g′(t1)

1− σ h(t1)

1 +Q(t1)
, (6.43)

and

Q(t1) =
√

1− σ h(t1). (6.44)

As we found in Chapter 5, Section 5.3.2, we have obtained an implicit representation

(6.42) for p̃0(t0, t1), and this implicit expression cannot be used to find the solution of the

linear differential equation (6.41) for p̃1(t0, t1). Since, as t0 gets large, the term e−β(t1) t0

converges to zero, it is reasonable to find the explicit approximate expansions for p̃0(t0, t1)

as t0 → ∞ which can be used to estimate the limiting state of p̃1(t0, t1). To do this, we

will consider two separate cases in the following sections.
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6.4.3 The Subcritical Surviving Case, σ h(t1) < 1

In a similar way to the calculations of Section 5.3.2, we expand the implicit solution (6.42)

in terms the small term of e−β(t1) t0 , β(t1) > 0, to obtain an expression that tends to the

surviving state Q(t1) as t0 → ∞. We now use this expansion to find the limiting form of

p̃1(t0, t1) as t0 → ∞.

A suitable asymptotic expansion is

p̃0(t0, t1) = f0(t1) + f1(t1) e
−β(t1)t0 + f2(t1) e

−2β(t1)t0 +O(e−3β(t1)t0). (6.45)

Substituting (6.45) into (6.42) and expanding and equating the coefficients of like powers

of e−β(t1) t0 gives the expansion for p̃0(t0, t1) as t0 → ∞ in the form

p̃0(t0, t1) = Q(t1) + A(t1)

[
(2 Q(t1))

1−Q(t1)

(Q(t1))2

]−1/(1+Q(t1))

e−β(t1)t0 +O(e−2 β(t1)t0), (6.46)

where A(t1) is the undetermined function of t1 of (6.42).

For the solutions of (6.41) that tend to Q(t1) as t0 → ∞, we attempt to obtain an

approximation p∗1 to p̃1 by replacing p̃0 in the coefficients of p̃1 on the left hand side of

(6.41) by Q(t1), the first term of (6.46); and by the first two terms of (6.46) on the right

hand side. These changes convert (6.41) to the linear differential equation

D0p
∗
1 + β(t1) p

∗
1

=
−1

g′(t1)
D1

[
Q(t1) +

(
A(t1)

(
(2Q(t1))

1−Q(t1)

(Q(t1))2

)−1/(1+Q(t1))

e−β(t1)t0

)]
. (6.47)

Solving (6.47) leads to

p∗1(t0, t1) = − Q′(t1)

g′(t1) β(t1)
− t0

(
A(t1)

[
(2Q(t1))

1−Q(t1)

(Q(t1))2

]−1/(1+Q(t1))
)′

e−β(t1)t0

+
t20
2
β′(t1)A(t1)

[
(2 Q(t1))

1−Q(t1)

(Q(t1))2

]−1/(1+Q(t1))

e−β(t1)t0 . (6.48)
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Following analogous arguments to those used in Section 5.3.3, we eliminate the coefficients

of t0 and t20 by choosing(
A(t1)

[
(2Q(t1))

1−Q(t1)

(Q(t1))2

]−1/(1+Q(t1))
)′

= 0, (6.49)

β′(t1) = 0. (6.50)

From (6.49), we get

A(t1) = cs as(t1), (6.51)

where

as(t1) =

(
(Q(t1))

2

(2Q(t1))1−Q(t1)

)−1/(1+Q(t1))

, (6.52)

and cs is an undetermined constant, while subscript ‘s′ refers to survival (or subcritical).

From (6.50), we choose β(t1) = 1. Thus the time scale t0s is then given by

t0s =
2

ϵ

∫ t1

0

Q2(s)

Q(s) + 1
ds. (6.53)

Thus the leading term expansion for the surviving population included in (6.42) is given

by

F (p0s, t)− cs as(t1) e
−t0s = 0, (6.54)

where

F (u, t) = u
−2

1+Q(t1) (u−Q(t1))

(
u+Q(t1)

2Q(t1)

) 1−Q(t1)
1+Q(t1)

, (6.55)

and as(t1) is as defined by (6.52).

Thus, for large t0, with the choices (6.49) and (6.50), the second leading term (6.48)

tends to

p1(t, ϵ) → −ϵ
Q′(ϵt) (1 +Q(ϵt))

2Q(ϵt)2
, t1 = ϵ t. (6.56)

Applying the initial condition (6.3) into (6.54) gives the constant cs as

cs = (µ−Q(0))

(
µ

Q(0)

) −2
1−Q(0)

(
µ+Q(0)

2Q(0)

) 1−Q(0)
1+Q(0)

. (6.57)
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Thus, for small and positive ϵ, we construct an implicit solution (6.54) of the leading

term p0s(t0, t1) and as t0 → ∞, the population ps(t, ϵ) survives to the limiting state

ps(t, ϵ) → Q(ϵt)− ϵ
Q′(ϵt) (1 +Q(ϵt))

2Q(ϵt)2
; (6.58)

where the function Q(ϵt) is defined by (6.44), for arbitrary parameter h(ϵt) satisfying

(6.34).

• A Comparison Between the Leading Term Expansion and a Numerical

Solution :

Here, to test the accuracy of our approximate expansion we compare it with the numerical

solution of (6.42), where the carrying capacity is taken as a constant and the harvesting

function h(ϵt) varies periodically with time and is given by

h(ϵt) = 1 + 0.02 sin(ϵt), (6.59)

where ϵ = 0.02, σ = 0.5 and the condition (6.34) holds. The close agreement between

the approximate solution for the surviving population and the numerical solution of (6.3)

can be seen in all of Figures 6.9-6.12 for short or long time frames. In these Figures the

population with different initial values survives to the limiting state (6.58), with

Q(ϵt) =
√
1− σh(ϵt)

where h(ϵt) is given by (6.59). Figure 6.13 shows the effects of increasing ϵ on the accu-

racy of our approximation compared with the numerical result. It shows that agreement

is very good up to ϵ = 0.2 which is probably not be regarded as small.
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Figure 6.9: The leading term approximation of surviving population (6.54)

(dotted) and the numerical solution of (6.3)(solid) using the parameters (6.59)

where ϵ = 0.02 , σ = 0.5 with µ = 0.3 .

• Logistically Varying Harvesting :

We assume the harvesting term arises as the solution of a logistic problem

dh(t1)

dt1
= r h(t1)

(
1− h(t1)

k

)
, h(0) = λ, (6.60)

where r, k and λ are given positive constants.

Here, the slowly varying harvesting or predation arise from a slowly evolving external

second population that is unaffected by the first population. Thus, (6.33) and (6.60) are

weakly coupled.

Solving (6.60) for h(t1) gives

h(t1) =
k

1 + (k/λ− 1)e−r t1
, t1 = ϵ t, (6.61)

where

λ < h(t1) < k.
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Figure 6.10: Using same choices as in Figure 6.9 but for large t, a compari-

son of the approximate solution (6.54) (dotted) and the numerical solution of

(6.3)(solid).

Figure 6.11: Comparison of the surviving population (6.54) (dotted line) with

numerical solution of (6.3)(solid) where σ, h(ϵt) as are in Figure 6.9, while

µ = 0.8 .
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Figure 6.12: Comparison of the surviving population (6.54)(dotted) with nu-

merical solution (solid) of (6.3) where σ, µ and h(ϵt) are as in Figure 6.11 .

Then, the condition for subcritical harvesting (6.34)) is met if we choose σk < 1 since

then,

σλ < σ h(t1) < σk, t1 ≥ 0.

For simplicity, we choose r = 1, k = 1, λ = 0.3 and with σ = 0.75 we ensure that the

(6.34)) condition holds.

The logistic harvesting function (6.61) is shown in Figure 6.14 with the above choices.

In this figure the population with the initial value µ = 0.3 survives to the limiting state

(6.58), with

Q(ϵt) =
√
1− σh(ϵt)

where h(ϵt) is given by (6.61). It demonstrates the accuracy of our leading term approx-

imation which compares well with the numerical solution of the problem.
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Figure 6.13: Evolution of a surviving population (6.54)(dotted) compared with the nu-

merical solution of (6.3) for data used in Figure 6.11, where µ = 2.0 and ϵ = 0.06, 0.08, 0.2 in

clockwise order starting from the top left corner.
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Figure 6.14: Comparison of the surviving population (6.54)(dotted) with nu-

merical solution of (6.3) (solid) where h(ϵt) satisfies (6.61)) with r = 1, k =

1, λ = 0.75, σ = 0.3 and µ = 0.3 .

6.4.4 The Extinction Case, σ h(t1) > 1

By similar analysis to that of Section 6.4.2, solving the leading term equation (6.40) where

the condition (6.35) holds, gives(
p̃20

p̃20 + σ h(t1)− 1

)
eω(p̃0) − A(t1) e

−β(t1) t = 0, (6.62)

where

ω(p̃0) = 2
√

σ h(t1)− 1 arctan

(
p̃0√

σ h(t1)− 1

)
, (6.63)

β(t1) =
2

g′(t1)
(σ h(t1)− 1) > 0, (6.64)

and A(t1) is an arbitrary function of t1.

By similar analysis to that of the previous section, an expansion for the solution p̃0 in

(6.62) that tends to zero as t0 → ∞ is given by

p0(t0, t1) = [A(t1)(σ h(t1)− 1)]1/2 e−
β(t1)
2

t0 +O(e−β(t1) t0). (6.65)
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Applying the same technique as in Section 6.4.3, to the solutions of (6.41) that tend to

zero as t0 → ∞, we find an approximation p̃∗1 to p̃1 by considering p̃0 = 0 (in the first

term of (6.65)) in the coefficients of p̃1 on the left hand side of (6.41), and by the first two

terms of (6.65) on the right hand side. Thus, the differential equation (6.41) becomes

D0p̃
∗
1 + β(t1)p̃

∗
1 =

−1

g′(t1)
D1

[
[A(t1)(σ h(t1)− 1)]1/2 e−

β(t1)
2

t0

]
(6.66)

Solving (6.66) for p̃∗1, we get

p̃∗1 = −e−
β(t1)
2

t0

g′(t1)

[
([A(t1)(σ h(t1)− 1)]1/2)′ t0 − [A(t1)(σ h(t1)− 1)]1/2 β′(t1)

t20
4

]
. (6.67)

To remove the t0 and t20 terms, in the usual way, we choose

([A(t1)(σ h(t1)− 1)]1/2)′ = 0, (6.68)

(β(t1))
′ = 0, (6.69)

to give

A(t1) = de ae(t1) (6.70)

ae(t1) = (σ h(t1)− 1)−1 (6.71)

where de is an arbitrary constant and subscript ‘e′ denotes extinction.

From (6.69), we put

β(t1) = 1,

that gives

t0e =
1
ϵ

∫ t1

0

(σh(s)− 1) ds. (6.72)

Thus, substituting (6.70) into (6.42), we obtain the leading term of an approximate solu-

tion for extinction case as

F (p0e, t)− de ae(t1) e
−t0e = 0, (6.73)
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where

F (u, t) =
u2

u2 + σ h(t1)− 1
eω(u), (6.74)

while ω(u) and ae(t1) are defined by (6.63) and (6.71) respectively.

Substituting the initial condition (6.3) into (6.73) gives the arbitrary constant de as

de = (σ h(0)− 1)

(
µ2

µ2 + σ h(0)− 1

)
eω(µ) (6.75)

Thus the implicit leading term (6.73) represents the behaviour of the population that is

driven to extinction, that is pe(t, ϵ) → 0 as t → ∞.

• A Comparison Between the Leading Term Expansion of Extinction Pop-

ulation and a Numerical Solution :

The behaviour of the extinction population represented by (6.73), where p(t, ϵ) → 0, is

shown in Figure 6.15. There is almost exact agreement with the numerical solution of

(6.14) for given parameters as given in Figure 6.15. Also it can be observed, in this Figure,

that the population will be driven to zero in infinite time.
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Figure 6.15: Evolution of the leading term solution of the extinguished

population (dotted) given by (6.73) and numerical solution of (6.3)(solid) for

σ = 1.05, h(ϵt) = 1.0 + 0.01 sin(ϵ t) with µ = 2 and ϵ = 0.02.

6.5 Transition Analysis

We have approximated the solutions of the problem (6.33) when only the harvesting

term h(t1) was slowly varied. We found leading order expressions for the surviving and

extinction cases of (6.33) when the condition (6.34) and (6.35) hold respectively. However,

as in similar discussions in Chapters 4 and 5, the population may change its behaviour

from survival to extinction through a transition region, i.e., in any neighborhood of any

point t̄1 where

σ h(t̄1) = 1; or Q(t̄1) = 0, (6.76)

for then as(t1) in (6.54), given by (6.52) is undefined, so that the surviving state solution

p0s fails to be defined. Thus, we reanalyse the solutions of (6.33) in a neighborhood of an

isolated transition point t̄1 on t ≥ 0.
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Defining δ(t1) by

δ(t1) = 1− σ h(t1), (6.77)

we parallel the approach of Chapter 5 and divide t ≥ 0 (t1 ≥ 0), into three regions:

Region 1, where 0 ≤ t1 < t̄1, or survival region, where δ(t1) > 0 (σ h(t1) < 1), and the

behaviour of the population is modelled by the implicit leading order solution p0s, (6.54),

that tends to the limiting state (6.58);

Region 2, a transition region, which surrounds the transition point t1 = t̄1; where δ(t̄1) =

0;

Region 3, t̄1 < t1 < ∞, or extinction region, where δ(t1) < 0, (σ h(t1) > 1) and the

leading term approximation to the population is modified to be

F (p0e, t)− d ae(t1) e
−t0e = 0, (6.78)

where the initial point of t̃0e is replaced with t̄1, so that

t̃0e = −1

ϵ

∫ t1

t̄1

δ(s). (6.79)

and d is undetermined constant.

We further assume that, while δ(t̄1) = 0,

δ′(t̄1) < 0, (6.80)

so the zero of δ at t̄1 is simple.

6.5.1 Solution within the Transition Region

Following the analysis of Chapter 4, we define a new variable τ by

t1 = t̄1 + ϵα τ (6.81)

for α > 0, and write the solution of (6.33), as p̃(τ, ϵ), where

p̃(τ, ϵ) = p(t̄1 + ϵατ, ϵ). (6.82)
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Noting (6.77) we substitute into the differential equation (6.33), and expand in powers of

ϵ to obtain

dp̃

dτ
= ϵα−1

[
p̃− p̃2 − p̃

1 + p̃

]
+ ϵ2α−1

[
(δ′(t̄1)τ)p̃

1 + p̃

]
. (6.83)

Similarly, we look at the expansion for the surviving limiting state (6.58) in terms of τ to

estimate the α value. This gives

p(τ, ϵ) →
√

−δ′(t̄1) τ ϵ
α
2 +O(ϵ), (6.84)

and suggests that the solution of the transition equation has the form

p(τ, ϵ) = u0(τ) ϵ
α
2 +O(ϵα). (6.85)

Substituting (6.85) into (6.83) gives

α =
1

2
(6.86)

and the leading term of transition equation as

du0(τ)

dτ
= δ′(t̄1) τ u0(τ)− u0(τ)

3. (6.87)

Solving (6.87) gives

u0(τ) =

[ √
−δ′(t̄1) e

δ′(t̄1) τ2

erf(
√

−δ′(t̄1)τ)
√
π + C

√
−δ′(t̄1)

]1/2
, (6.88)

where erf(..) is the error function, (see [1]) .

Thus, to match Region 1 with 2, we choose

C =

√
π√

−δ′(t̄1)

and expanding the solution (6.88) for large and negative τ gives

ϵ1/4 u0(τ) → ϵ1/4(
√

−δ′(t̄1) τ − 1

4
√
−δ′(t̄1)τ 3/2

+ . . .) as τ → −∞ (6.89)
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so that the common part of the solution between the Regions 1 and 2 is

ϵ1/4
√

−δ′(t̄1) τ , δ′(t̄1) < 0. (6.90)

Thus, by using matching technique, the uniformly valid expansion for the solution over

Region 1 and Region 2 has the form

p1 2 = p0s + ϵ1/4

[ √
−δ′(t̄1) e

δ′(t̄1) τ2

√
π(erf(

√
−δ′(t̄1)τ) + 1)

]1/2
− ϵ1/4(

√
−δ′(t̄1) τ) + . . . (6.91)

where p0s is defined implicitly by (6.55).

We note that, as τ → −∞ in (6.91), the ϵ1/4 terms cancel, and the composite solution is

given by p0s, the surviving implicit solution (6.55), as expected. Moreover, in the tran-

sition region (where t0s = ∞), p0s → ϵ1/4
√
−δ′(t̄1) τ , and so the solution is represented

by ϵ1/4 u0(τ), again, as expected.

The expansion (6.91) is assumed to hold up to t1 = t̄1, the transition point. To obtain

an approximation to the solution on t1 > t̄1; i,e., Region 3, we note that in Region 3, the

extinguishing solution is approximated, to leading order, by p0e, defined by (6.78).

If we follow analysis that is completely analogous to that of Section 5.5.2, we find that to

match this solution with ϵ1/4 u0(τ) as τ → ∞, we must choose d = 0. Thus, to leading

order, solutions in Region 3 are represented by the slowly varying solutions of

f(p0e, t) = 0.

One of these is p0e = 0, so we choose the expansion in Region 3 to have the limiting value

zero. This just the limiting value of the transition solution, ϵ1/4 u0(τ), so in Regions 2

and 3 the combined uniform expansion is

ϵ1/4

[ √
−δ′(t̄1) e

δ′(t̄1) τ2

√
π(erf(

√
−δ′(t̄1)τ) + 1)

]1/2
, (6.92)

that is, the transition solution itself. As noted in Chapter 5, this phenomenon has also

been observed in a related transition problem [30].
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6.6 Discussion

As in Chapters 2 and 5, we have been able to apply the multi-timing method to obtain

approximations to the solutions of the harvested model problem (6.26); or, in fact, its

dimensionless form (6.27). Because of the implicit nature of solutions for this, we could

only obtain a leading order approximation. However, as the excellent comparisons with

numerical solutions show, we may place considerable faith in the approximations.

A simplified version of the problem has been considered here - namely that where

the “harvesting coefficient” H(T ) (or h(t)) was slowly varying. This is assumed to be

most relevant to physical reality. However, the analysis could be extended to the case

where some, or all of the other parameters R,K and A varied slowly in time, on the same

(longer) time scale as H. This would simply result in more complex algebra, but the

results would be comparable. The number and the definition of dimensionless parameters

in (6.27) would change (see the discussion about nondimensionalisation at the beginning

of Chapter 2).

Analysis of the dimensionless constant coefficient problem (6.5) in Section 6.3 showed

that there is a variety of possible solution types (survival or extinction) as the parameters

η and σ varied in the (η, σ) plane, with solution type changes at various points. For the

related slowly varying problem (6.3), we expect these phenomena to again occur, with

dramatically increased complexity in solution type and type changes. Because of the

complexity of this situation, transitions in solution type have only been considered in the

simplified slowly varying problem (6.33). The analysis of more general problem (6.3) has

been left for future work.

In this chapter, we have concentrated on harvesting (or predation) characterised by

a type II Holling term. However, the techniques used here would be relatively easily

adapted to a type III Holling term, as applied in the analysis of the spruce budworm

problem (see Murray [48]). Again, this points to future work.
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The analysis presented in this chapter is being prepared for publication in Idlango et al

[37].
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Chapter 7

Conclusion

This dissertation has examined several single species population models involving ordinary

differential equations where the model parameters are assumed to be functions of a single

slow time. Analytic (explicit or implicit) approximate solutions have been obtained by

employing the straightforward multi-scaling method by which the differential equation is

reformulated as a partial differential equation involving a small positive parameter ϵ. This

partial differential equation can then be solved using a perturbation method. The method

as used here involved two different scales of time, the slow time scale and a normal one,

with the small parameter ϵ measuring the ratio of the first to the second.

While the multiscaling perturbation method is a powerful and logical technique, some-

times the complexity of the mathematical equations involved and the algebraic steps

needed in the solution process cause the application of this method to solving problems

to become very complicated. In such cases, using software packages such as Maple and

Mathematica can indeed reduce this complexity of formal calculations and eliminate er-

rors in the algebra. This has been the case in the calculations needed to complete the

analysis of this dissertation.

The analytic approximations obtained in all the problems studied in Chapters 2, 5

and 6 provide general representations for a general range of model parameters under
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certain reasonable conditions in each case. This contrasts with the results obtained using

numerical methods of solution, that are only valid for particular (numerical) choices of

data.

Although the approximations that were constructed using the multiscaling method

failed to represent the solution of the the problem in regions termed transition regions, a

separate analysis in such regions using the matched expansions method created valid com-

posite approximations for the solution over the domain of definition of the problem. This

combination of the “global” multiscaling method with the “local” matched expansions

method is a powerful combination that has proved to be very successful.

The accuracy of our results have compared very well with the results of the numerical

computations for different choices of slow time parametric variation. While these approx-

imation techniques are very successful, we note that they are a formal process only, being

based on the assumption of a unique exact solution of the original problem, for which the

approximation constructed is indeed a good approximation. When the problem is not too

complicated, powerful theoretical techniques can be used to establish the existence of a

unique solution to the problem that is close to the formal approximation. This was done

using contraction mapping proof in Chapter 3 for the harvesting model. While we note

that such a proof might be more complex for the approximations of Chapters 5 and 6,

it seems clear that the success of the proof of Chapter 3 depended on the characteristics

of the linear map T given by (3.13). These, in turn, depended on the properties of the

leading approximation, p0. Thus, if similar properties of the corresponding linear maps

relevant to the problems of the Chapters 5 and 6 could be established (based on the

relevant p0), a proof might be successfully executed. Moreover, the nature of the exact

solution might depend heavily on the background data, as in Chapter 3.

Carrying out the construction of the approximations of Chapters 2, 5 and 6 leads

us to the significant observation that the multiscaling method will yield useful results
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whenever the corresponding constant parameter problem can be solved, either explicitly

or implicitly. For then, when slowly varying parameters are involved, a leading order

approximation can be constructed, directly, as in Chapter 2, by eliminating undesirable

terms; or indirectly, as in Chapters 5 and 6, by eliminating terms generated by the limiting

form of the (implicit) leading term in the expansion.

This leads to the extension of this technique to models where the constant parameter

form has an exact solution, whether explicit or implicit. A comprehensive collection of

such solutions can be found in Tsoularis and Wallace [61].

The only limitation is the complexity of the analysis involved. As in this thesis, local

analysis using matched expansions could deal with any transitions arising.

One other extension to consider would be to look at the situation where the time

scales of parameter variation were not all the same. Thus, for example, in the case of

the harvesting model, Section 2.1, it would not be true that TR = TK = TH . Then, if all

these time scales were long relative to T ∗, the intrinsic time scale of the the model (R−1

in (2.2)), there would be three small parameters,

ϵR = (TR R0)
−1 ϵK = (TK K0)

−1 ϵH = (TH H0)
−1

and three slow times,

t1R = ϵRt t1K = ϵKt t1H = ϵHt

with approximate “normal′′ times t0R, t0K t0H defined in terms of functions gR, gK and

gH . Clearly, the complexity of the analysis would increase dramatically. However, in some

cases, a hierarchy might be established in terms of one small parameter, ϵ = ϵR, say, so

that

t1R = ϵ t, t1K = ϵ2 t, t1H = ϵ3 t,

for example, giving a clear separation in the time scales of variation in R, K and H.

In this case, the analysis, although complicated, might be tractable, yielding a solution

depending on the four time scales t0, t1R, t1K and t1H .
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While only one-dimensional problems have been considered in this thesis, it is clear

that the multiscaling approach may be adapted to systems modelling population growth

- for example, predator-prey and competing species. In such cases, the analysis would be

of a higher order of magnitude in difficulty, but, in particular cases, could be profitable.

Two distinct situations are possible. One arises when all the defining parameters of the

system are slowly varying, due to external factors. This might be the more difficult to

analyse.

The second occurs when the cross linking between the component model differential equa-

tions is weak, due, for example, to a slower growth rate of one species. This is seen in the

second example of Section 6.4.3 (6.60), where a slowly varying harvesting (or predation)

is introduced into a Holling type II evolving population from a slowly varying logistic

source.

An analogous predator-prey model, with slowly growing predator has also been treated

by multiscaling techniques - see Grozdanovski [26].

While the model considered in Chapter 6 in a single species one, it may be considered as a

sub-case of a two dimensional system in which harvesting (or predation) arises from a sec-

ond slowly varying source. Thus, (6.33) could be seen as one component of Holling-Taner

type predator-prey model (see Tanner [60] , or Arrowsmith [4]). If the predator showed

slow growth, the analysis of Chapter 6 would be relevant to a study of such model.

A similar approach could be applied to study the full spruce budworm problem [42] where

the predation by birds could be viewed as relatively slowly changing.
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