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STATEMENT

We present a two loop circuit (see Figure 2) for analysis. Using different frequency voltages we drive

the circuit and asking you and your classmates to report back gain (defined below) from the circuit,

wherein one can plot the gain versus input voltage frequency data from the entire class to analyze

this circuit. Some basic electrical circuit notions are offered from a textbook source we have used

[1, pp. 118-119]. Of course, there are other sources, e.g., electrical engineering and circuits texts,

physics texts, and web-based material.

Introductory Notions for Circuit Study

Consider a typical one-loop RLC circuit (see Figure 1). R is resistance in ohms, L is inductance in

henrys, and C is capacitance in farads, or more usually microfarads. There is an electromotive force,

E(t) = E0 sin(ωt), in volts driving the circuit. This voltage produces an alternating current, I(t),

in amperes at time t, in the circuit as a measure of the flow of electrons in the particular branch of

the circuit.

Kirchhoff’s Voltage Law says that in the circuit at all times t the voltage source, E(t) =

E0 sin(ωt), equals the sum of the three voltage drops – over R, L, and C, i.e. E = ER + EL + EC

(see Figure 1). The voltage drop over each of the devices, resistor R, inductor L, and capacitor C

is given by the following formulae, respectively:

(R) ER = RI,

(L) EL = LI ′, and

(C) EC = 1
C

∫
I(t) dt.
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Figure 1. Single loop RLC circuit.

Consider the following differential equation in I(t), the current in the one loop circuit of Figure 1,

using Kirchhoff’s Voltage Law as an elementary example of Figure 2. Sum the voltages across the

resistor, the inductor, and the capacitor and set this sum equal to the voltage from our source or

driver, E(t):

LI ′(t) + RI(t) +
1

C

∫
I(t) dt = E0 sin(ωt) . (1)

Convert this into a second order differential equation in I(t) by differentiating both sides with respect

to t:

LI ′′(t) + RI ′(t) +
1

C
I(t) = E0ω cos(ωt) . (2)

Note that prior to the voltage source being applied there is nothing happening in the circuit, i.e. there

is no voltage or force to move the electrons in the circuit. Hence, the reasonable initial conditions

are I(0) = 0 and I ′(0) = 0.

Consider the electrical circuit in Figure 2 and we give each student a unique parameter - the

frequency of the driver voltage, i.e. ω. Each student should take a different input frequency, ω, aqnd

model the circuit, solve for the gain associated with the specific assigned parameter, and report back

this gain value. The data is to be collected in class where it will be plotted to see what can inferred

from such a display. Describe what this circuit really does. The circuit offered is shown in Figure 2.

The values for this circuit are C1 = 2.5×10−6 F (farads), C2 = 1.0×10−6 F, R1 = 200 Ω (ohms),

and Rload = 1000 Ω. Use E(t) = sin(ωt) (volts) with ω = 100 (radians/sec) as a trial run.
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Figure 2. Two loop RLC circuit.

Activity

1) Build equations to describe this two loop circuit using Kirchhoff’s Voltage Law as above and

Kirchhoff’s Current Law which says that the sum of the currents at any node in the circuit

must be 0, i.e. what goes into the node has to go out without loss or gain.

We identify variables:

x(t) is the current from Point 1 to Point 2,

y(t) is the current from Point 2 to Point 5, and

z(t) is the current from Point 2 to Point 3 to Point 4 to Point 5.

One way to measure the behavior of this circuit is to compare the amplitude of the “output”

voltage z(t)Rload (recall voltage is current times resistance!) with that of the input voltage E(t).

From Kirchhoff’s two laws one can find the relationship between the source voltage, E(t), in

Loop I and the sum of the voltages across the devices in Loop I,

sin(100t) = x(t)R1 +
1

C1

∫
y(t) dt (3)

and in Loop II using the resultant voltage across C1 as a source voltage and adding the voltages

across C2 and Rload,
1

C1

∫
y(t) dt =

1

C2

∫
z(t) dt + z(t)Rload . (4)

Finally, use Kirchhoff’s Current Law at node 2 to relate the three currents, x(t), y(t), and z(t).

Imposing initial conditions that all currents and all change (derivative) in currents are 0, we

have in (1), (2), and (3) what we need to solve for each of the three currents, x(t), y(t), and z(t).

In particular, we can solve for z(t) and determine the amplitude of z(t)Rload, the output voltage,

to compare to the amplitude of E(t) = sin(100t), the input voltage as a ratio. This ratio of the
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amplitude of the output voltage to the amplitude of the input or source voltage is called gain and

we seek the gain for various input voltage frequencies ω (frequency here is in radians/second) with

ω = 100 being the trial run frequency. We recall that the input or source voltage frequency is exactly

the same as the output voltage and so in studying gain we are merely comparing amplitudes of the

same frequency voltages.

Assignment of Input Voltage Frequencies

We now assign a span of frequencies ω, say from ω = 100 to 10,000, for an input voltages E(t) =

sin(ωt) and ask you and your classmates to compute a gain over the resistance RLoad for the specific

assigned frequency in our circuit of Figure 2.

2) Use your assigned frequency, ω, and determine your corresponding gain, i.e. the ratio of am-

plitude of the output voltage to the amplitude of the input or source voltage

When the class has returned with their circuit gains for their respective input frequencies

we will plot gain vs. input frequency and see what such a plot shows us when we consider input

voltage frequencies ω in the range (0, 10, 000].

3) For further study, consider the same two loop circuit in Figure 2 and determine the sensitivity

of the Gain vs. Voltage input frequency to changes in one or more of the parameters C1, C2,

R1, or RLoad. Namely, if we change one of these parameters how does such change effect the

circuit’s performance, its gain attributes?
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