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Engineering Design Optimization 
using Calculus Level Methods: A Casebook Approach 

By Phil B Brubaker 

 
Welcome to Calculus-level Problem Solving! 

Engineers in industry wanted to ‘tweak’ their parameters.  So this textbook was written to show the 
simplicity of ‘tweaking’ parameters in algebraic through differential equation problems when using a 
Calculus-level language like PROSE or FortranCalculus.  FortranCalculus (FC) is available on the web. 

Automatic Differentiation (AD) and Operator overloading were key technologies that allowed numerical 
methods, now called solvers, to be stored in a FC library.  A user will use a solver by stating a solver name in 
a ‘find’ statement using the ‘by’ clause. Want to switch solvers?  Just change the solver name (e.g. from 
‘Ajax’ to ‘Jupiter’) and you are ready to try a different numerical method! It is that easy to code. (See the 
FortranCalculus manual for suggestions on what solver to use for a given problem.) 

Help spread the word about Calculus-level thinking and problem solving.  Do you know any 
engineering or science professors that might have a problem that could be solved and shown to their 
future students? 

This textbook tries to move today’s thinking from solving one problem at a time, to solving all of their 
project’s problems at once while tweaking parameters in order to achieve an optimum solution.  This requires 
Calculus-level thinking.  An analogy might be thinking in terms of Machine code, one bit at a time. Today, 
computer simulations have people thinking in terms of Algebraic code, one problem at a time.  We are trying 
to move people to Calculus-level code, solving entire projects at a time.  This will reduce development time 
and improve accuracy of their math models.  (Future CEOs should study the Oil Refinery Production 
problem in order to see future possibilities with Calculus-level thinking.) 

 

Mission Statement: 
Get the FortranCalculus compiler operational and in use via the internet.  It’s a free compiler that simplifies 
solving math problems by minimizing code necessary to state & solve a problem.  Some new thinking is 
necessary for those wanting to get the most for their buck; convert from simulation to optimization thinking. 

What’s the different between simulation and optimization?  Picture a saw horse construction project.  A 
Simulation would yield A saw horse where Optimization would yield an Optimal saw horse.  If the objective 
(function) was good and proper then the Optimal saw horse would be the best solution, right?  For example, 
the objective might be lightest & strongest saw horse.  A wrong objective might be just the strongest saw 
horse.  This might yield a strong horse but a very heavy one! 

If you were a manager or CEO and had the choice of a simulation design versus an optimization design, 
which would you pick? 

Modeling & Simulation’s next step is (Mathematical) Optimizations.  Optimizations require an Objective 
(function).  Today's Engineers & Scientists solve problems with a “Find X” mind-set.  With some 
Operational Research training they could expand their thinking to a “Find X to Optimize Y” mind-set.  Then 
they would be ready for Optimizations, Calculus-level programming and software.  (This would drop today’s 
design times that require months even man years to one or two days!  Manufacturing processes could be 
optimized to the days demand and thus maximize their profits.) 

“Find X to Optimize Y” thinking among professors will cause most Engineering & Science textbooks to be 
rewritten with optimization examples and discussions.  This will be great stuff for industries and 
government; applied engineering and/or science not just theories. 



 2011 Optimal Designs Enterprise  2 

Table of Content 
Welcome to Calculus-level Problem Solving!........................................................................................... 1 

About........................................................................................................................................... 5 
Introduction ............................................................................................................................................. 5 
1 General Algebraic Equations .................................................................................................................. 9 

Background of TFH Math Model for a Readback Pulse from Magnetic Recording ................... 9 
A Typical Readback Pulse from Magnetic Recording ................................................................ 12 
An Unusual Readback Pulse from Magnetic Recording ............................................................. 15 
A Typical Readback Pulse from Magnetic Recording with Improved Model............................. 17 
An Unusual Readback Pulse from Magnetic Recording with Improved Model ......................... 19 
Curve fitting: A Sinusoidal Signal .............................................................................................. 21 
Curve fitting: A Damped Sinusoidal Signal ................................................................................ 23 
1.4 Conclusion on Curve Fitting ................................................................................................. 25 
Pharmacokinetics ........................................................................................................................ 26 
Slack Variable Techniques .......................................................................................................... 29 
Paper Bicycle Design .................................................................................................................. 31 
Chapter 1 Exercises ..................................................................................................................... 33 

2 La Place Transforms ............................................................................................................................... 34 
Optimum Matched Filter (Transfer Function)............................................................................. 34 
Chapter 2 Exercises ..................................................................................................................... 44 

3 Ordinary Differential Equations ............................................................................................................. 46 
Second Order Non-Linear ODE .................................................................................................. 47 
A Third Order Non-Linear ODE ................................................................................................. 50 
A Bang-Bang Control Problem ................................................................................................... 53 
Non-Linear Equations of Motion ................................................................................................ 62 

4 System of Differential Equations............................................................................................................ 65 
The Lorentz Equations, a System of ODEs................................................................................. 66 
The Convection Reaction Equations, a System of PDEs ............................................................ 69 
Body Plasma Chemistry .............................................................................................................. 71 
Modeling a Nanostructured Solar Cell ........................................................................................ 76 
Chapter 4 Exercises ..................................................................................................................... 82 

5 Partial Differential Equations ................................................................................................................. 83 
PDEs: Stock Market to Biology .................................................................................................. 84 
Burgers’ Equation ....................................................................................................................... 86 
Telegrapher’s Equation ............................................................................................................... 89 

6 Inverse Problems .................................................................................................................................... 92 
Custom Thermistor Design ......................................................................................................... 93 
Drug Development ...................................................................................................................... 95 
Heat Transfer over 1D Slab......................................................................................................... 96 
Robot Arm Movement................................................................................................................. 99 
Plane Crash Locator .................................................................................................................... 102 

7 Implicit Equations................................................................................................................................... 104 
System of Implicit Algebraic Equations...................................................................................... 105 
2nd Order Implicit Differential Equation ..................................................................................... 108 

8 Nesting Solvers....................................................................................................................................... 110 
Nesting … Matched Filter ........................................................................................................... 111 
Oil Refinery Production .............................................................................................................. 113 

9 Miscellaneous ......................................................................................................................................... 118 
Monte Carlo Simulation OR Total Derivative?........................................................................... 118 
Stiff Equations & Trouble Shooting............................................................................................ 119 

10 Conclusions .......................................................................................................................................... 121 
10.1 Future: Thinking outside the box ........................................................................................ 121 

11 Appendix .............................................................................................................................................. 125 
Picking the right Solver ............................................................................................................... 125 
‘aplot’ source code ...................................................................................................................... 125 
Spectral Estimation (freeware) Software..................................................................................... 126 
‘readrit1.100’ File Listing ........................................................................................................... 126 
‘readrit2.200’ File Listing ........................................................................................................... 127 
Arbitrary Equalization with Simple LC Structures ..................................................................... 130 
Incomplete Problems: can you help complete one or more? ....................................................... 133 

Index.......................................................................................................................................................... 134 



 2011 Optimal Designs Enterprise  3 

Preface 

How to teach new problem solving technology to engineers and scientists?  Problem solving requires a broad 
based knowledge in math and science as well as discernment and flexibility to challenge the way it has 
always been done in the past.  Generally, an objective driven design will yield the best design in the least 
amount of time.  Companies need engineers trained in setting objectives before they begin the time- 
consuming process of formulating and testing new concepts and designs. 

This textbook considers design from the pragmatic concerns of industry.  It utilizes casebook studies of math 
problems with their solutions in real life situations.  Because it encourages students to view themselves as 
part of the design team, this text is the next best thing to an on-the-job training.  It shows how setting 
objectives to problem solving assignments can help students complete work quickly and efficiently, but it 
also stresses that while every situation is different, the approach remains the same: objective-driven 
engineers state a math model and an objective function for a given problem while leaving the solving to a 
calculus-level computer language/compiler. 

The text attempts to fill a gap in educational material in the mathematical problem solving arena.  Traditional 
texts leave students in a simulation thinking mode.  Simulations require many computer runs causing delays 
in solution and little gain, if any, in problem understanding.  Simulations require a numerical algorithm to be 
meshed with their math model.  In such form, math models are hard to recognize and discuss.  Besides 
slowing their understanding, users lose confidence in program solutions. 

This textbook tries to move today’s thinking from solving one problem at a time, to solving all of their 
project’s problems at once while tweaking parameters in order to achieve an optimum solution.  This requires 
Calculus-level thinking.  An analogy might be thinking in terms of Machine code, one bit at a time.  Today, 
computer simulations have people thinking in terms of Algebraic code, one problem at a time.  We are trying 
to move people to Calculus-level code, solving entire projects at a time.  This will reduce development time 
and improve accuracy of their math models. 

NASA funded the development of the first Calculus-level language through TRW called Prose.  Prose 
became available to the public in 1974 through a national computer time-sharing network.  Prose ran on large 
Control Data Corporation (CDC) 6600 computers.  Automatic differentiation and operator overloading were 
key technologies for this project.  I taught the Prose language to Engineers & Scientists in the San Francisco 
Bay Area from 1975 through 1979.  Most national time-sharing computer networks died in the 1980s and 
thus went Prose.  FortranCalculus is the next Calculus language on the horizon.  It is in testing mode now 
and will soon be released on the web. 

Things to learn from this textbook include: 
 How Calculus-level programming simplifies problem solving; 
 Use of Lorentzian (function) series for curve fitting; 
 How to find frequency parameters when curve fitting sine series to data; 
 Manage by Objective; and, 
 How to ‘tweak’ hundreds of parameters at once. 

Features that link concepts to the real world 

Approach: 

     Practical and elementary procedures which rely on true understanding.  It is expected that students 
should understand Integral and Differential Equation notation before using this text. 

    Casebook studies which involve students in the real life drama of the design engineer or applied 
mathematician. 
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    Exercises which state a math problem and its objective(s) in a simple and precise format.  This 
format allows peers and associates to discuss a problem's definition in great detail.  A problem 
definition normally requires just a few lines plus the math model.  These compact definitions allow 
associates worldwide to receive faxed copies on which they may immediately respond. 

    The opportunity to learn from other people's successes and failures sets this book apart from others.  

Just glancing at the table of contents reveals examples from many industries__ Aerospace, 

Chemical, Computer, Pharmaceutical, Structual Engineering __ to name a few. 

Timeliness: 

    During a time of company downsizing increasing engineering and science productivity would help 
keep U. S. jobs.  For example, one objective-driven problem/solution used the calculus based 
language PROSE to reduce a matched filter design time from 12 weeks to one.  The filter was used 
in a Memorex disc drive and normal turnaround design time would have required a 3-month cycle.  
With the proper objective function, math model and a calculus based computer language, an optimal 
filter was designed and tested in less than one week.  This filter's objective function and math model 
originally came from many older engineering textbooks that are still in use today.  Memorex 
employees required two years of testing and listening to find the true objective for this filter. 

New Technologies: 

    A calculus-based computer language for PC usage will be available in the near future.  (The 
struggling economy which reduced venture capital has slowed the release date by several years.  
With or without software, students who learn the objective-driven solution methodology will 
increase productivity from their increased understanding, even if their solution is incorrect.) This 
computer language requires an objective function as well as a math model to determine an optimal 
solution. 

    Computer usage is reduced by several orders of magnitude. 

    Problem definition teaching that consists of a math model and an objective function. 

Features: 

    Objective-driven problem solving provides several user benefits: 
o Clear Problem Definition 
o Accelerates Problem "Understanding" 
o Decouples Models from Algorithms ... i.e., removes "noise" from the picture 

    Other benefits when solutions come by way of a calculus based language: 
o Allows Rapid Model Prototyping 
o Allows Interchangeable Algorithms 
o Enabled by Automatic Differentiation 
o Allows Structured Nesting of Algorithms ... a first! 
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About 

Notes: These example problems in this textbook were solved on a DOS version of FortranCalculus that the 
Software Architect, Joe Thames, provided for a few of us for testing in early 1990s.  Joe was the main force 
behind these Calculus-level Compilers since the 1960s. See his MetaCalculus (MC) website for a history of 
Calculus compilers. 

Author: Phil B Brubaker Accomplishments 

 Reducing circuit development time from 12 weeks to less than 
1 week was another increased productivity example at 
Memorex Corp. Plus the solution was optimal. This circuit was 
called a Matched Filter where minimizing inter-symbol 
interference (ISI) was the goal.  This was accomplished by 
using the Calculus-level Problem-Solving computer language, 
Prose. 

 Increased productivity resulting from optimizing a software 
program that required 20 to 30 days per execution to less than 
10 hours at Lockheed Missiles & Space Co. Received 
Presidents award.  Saved Lockheed $10 Million! 

 

Software Architect: Joe Thames Background 

Professional Mission: Meta Science 

Pioneering a means of hyper-simplification in very advanced 
mathematical software design and development by end-user 
scientists to address ad-hoc systems optimization problems, and 
suitable for learning science and mathematics in primary 
education. 
Applying automated intelligence (search engines) through 
metaphoric software construction methods (e.g. spreadsheets) 
from Apollo, now being adapted for web use via service-
oriented architecture. 

Specialties: 

 Nonlinear Systems Optimization Modeling 
 Mathematical Modeling Software Design, Development and Marketing 
 Service Oriented Architecture (SOA) Design & Development 
 Grid & Cluster Computer Software Architecture 
 Web Site Generation for Rapid Comprehension Software Documentation 
 Robotic Financial Options Trading Software Design 
 Open source software engineering expertise in Linux, Perl, Apache, Mason, JavaScript 

Introduction 

Parameter estimation can tweak one’s parameters to optimum values but if one’s company has no Statistical 
Process Control (SPC) or equivalent procedure for monitoring one’s manufacturing process, those optimum 
parameter values will do you little good.  So here are some suggested requirements to using parameter 
estimation: 

 In-house Statistical Process Control monitoring implemented; and, 

 Models must be continuously differentiable, i.e. no statistical models; 
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Parameter estimation with a Calculus-level compiler, can help tweak math model parameters in algebraic and 
differential equations.  The equations may be linear, non-linear, explicit, implicit, constrained, etc.  
Differential equation problems include initial value problems (IVP), boundary value problems (BVP), or just 
curve fitting.  The number of parameters that one can vary at any one time is constrained only by the size of 
computer used.  Say you want to solve for ‘n’ parameters, then you would need a computer that can handle 
arrays of the size n².  So even a Personal Computer (PC) can solve for 100s or even 1,000s of parameters. 

A ‘find’ statement is the work horse of a Calculus language.  It is used in parameter estimation, boundary 
value problems, implicit equation problems, inverse problems, etc..  The find statement’s solver varies 
parameters in ones model until the stated goal is achieved.  Different solvers use either the jacobian or 
Hessian matrix to estimate where to jump next with ones parameter values.  The partials are calculated using 
‘automatic differentiation’ (AD) and thus are as exact as one’s computer. 

 

 

Models must be continuously differentiable for AD to work right and calculate the right step size in 
parameter values. 

Topics covered in this textbook include: 

 Lorentzian series Curve fitting: if you need a model for some data, try a couple of Lorentz 
functions (see Applications 1.1.1 through 1.1.4). 

The normal power series does little for fitting real data well.  Suggest dropping this series and 
replace it with a Lorentzian series for more practicality. 

 Sine series Curve fitting: is hard to fit to real data with the normal solvers available today.  Use of a 
spectral estimation program, e.g. spectrumSolvers, to find good starting frequency  values makes it 
possible for a solver to converge to excellent frequency values and a good fit to data.  Why not 
create a solver that does both estimate initial frequency values and fit other parameters to data?  
Application 1.2 & 1.3 have some cases to prove the point that it is possible. 

 Initial value problems (IVPs) for ordinary differential equations (ODEs) only require an integrate 
statement; i.e. no find statement.  IVP require the least amount of time to write and solve. 

 Boundary value problems (BVPs)  for ordinary differential equations (ODEs) have a find 
statement wrapped around the integrate statement.  The find statement varies initial condition 
variables, e.g. ydot0, y2dot0, etc. and parameter fitting variables.  By varying ydot & y2dot at t=0 
you can find the best solution for ones ODEs given the boundary conditions. 

 Partial Differential Equations (PDEs) will be solved by converting them into ODEs using method 
of lines or other method.  PDEs may be non-linear, implicit, constrained, etc.  Time to write a 
program will be in the hours thus saving many man hours of time.  Start thinking of nesting ODE & 
PDE problems so you can simulate not just one part of a project but the whole project as will be 
discussed in chapter 10. 

 Nesting of find statements is possible and thus one should think of solving many math models in 
one run.  For example, an oil refinery has many distillation units each requiring a different PDE 
math model.  All can be combined into one program where key parameters are tweaked until 
production goals are achieved. 

The examples in this book are also included in the FC-Compiler application.  Our Curvfit demo application 
is highly recommended to be installed on your PC for more Curve Fitting examples. 

The key questions that you will be faced with when doing computer simulations are: 

 How good is your math model for your data set at hand? 

 How well does your solver converge? 
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 How well are the parameters related to your problem? 

We will be discussing these issues as we go through the following examples. ‘How good is your math 
model?’ is always number one question. 

How good is your math model? 

Are you sure that all effects are accounted for?  I have found that people comment more on ‘bad’ math 
models than on ‘good’ models.  For example, what is the ‘worst condition’ versus ‘best condition’ for a 
forest fire?  Asking about the ‘worst’ got more comments.  People seemed to have more to say or were 
willing to say something regardless of their background. 

Lacking a parameter?  

Application Problems 1.1.1 & 1.1.2 math model lacked one parameter that was added for Application 
Problem 1.1.3. & 1.1.4  Finding lacking parameters in one’s math model is not always easy.  Those who 
know your field are often satisfied with the present working math model, so it’s often hard to get them to 
think outside the box!  If you feel that some parameter is missing, keep asking, keep searching … don’t give 
up! 

Any errors in model? 

Oh those little minus signs in a math model, how easy it is to miss type one or two.  Do you have any of 
those little things floating around in your work?  When deriving a math model for the application titled 
‘Optimum Matched Filter (Transfer Function)’, see Application Problem 2.1 below.  A twenty-two hand 
written page document was used to derive the desired math model with all its parameters.  Unfortunately a 
minus sign or two were dropped in the development.  Fortunately another employee found the errors and 
corrected them.  The smaller the computer code for a problem, the easier it is to find those little but important 
errors. 

Another example of model errors was found in the SPICE computer simulation program from a University.  
The program had been in use for around ten years when six out of nine equations were found to be wrong or 
outdated.  Too many hands working on it and not enough control on inserting modified equations. 

Many of the examples in this book come from the disc drive industry of the 1980s.  So the problems are real 
and the math models have meaning to those developing disc drives. 

How to Improve Solver Convergence? 

Normalize your equations so that your unknown parameter (absolute) values will be between .1 & 10.  
Removing large/small power calculations will help solvers converge to a solution; e.g. 106 & 10-6.  Initial 
values are thus either one or zero on the first run; future runs hopefully will have values between .1 and 10. 

The Chapter 1 examples will be discussed in order to show there model’s strengths.  Where possible, the 
graphs shown are the data vs. model and error results.  The best error plot can be seem in Application 
Problem 1.1, Figure 1.6b.  The error is highly sinusoidal and has relatively low amplitude.  Also, the 
Calculus-level code used to solve for their parameters will be shown and discussed. 

One’s Vision 

   

Mr. Arithmetic Mr. Algebra Mr. Calculus 
____________ ___________ _____________ 
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Before Computers With Computer, 
Gained some vision 

Optimize the Whole Show 
in One Run 

Process Methodology: 
   

One Step at a Time Simulate Problem on 
Computer 

Find Optimal Solution. 
Must ‘See’ Entire Problem 
& Objectives 

We will be attempting to enlarge one’s vision, especially in the last chapter, on future math models. 
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1 General Algebraic Equations 
Application Problem 1.1 

Introduction to Magnetic Recording 

Curve fitting is the first type of parameter estimation problem that we will be discussing.  We have two data 
sets retrieved from Magnetic Recording during the 1980s for what are called an Isolated (Readback) Pulse.  
Both these data sets had an ‘okay’ fit with model one, a Lorentzian series.  Thus we tried to find a better 
math model, a modified model.  This new model converged faster than the first model.  Does this mean we 
should always use the new modified model? 

Relating Model and Design Parameters 

Assuming the digitized data fits a math model with quadratic convergence, how do the model parameters 
(a ) relate to the design dimensions?  For example, this present Thin-Film-Head (TFH) for disc drives 
example has the model parameters vi , pw_50i , and ti  (for i= 1 to 3) while the design parameters as shown 

in the following diagram are A, B, C, D, E, & F. 

 
Figure 1.1  A TFH at flying height F above a disc drive's media 

The governing equations may not be known for sure but someone with an understanding of the magnetic 
effects on a TFH could at least determine whether the parameters are proportional or inversely proportional.  
This would help as one starts building an understanding of what a math model might be in order to find the 
optimum design parameters to produce a symmetric and "narrow" (readback) pulse with no or minimal 
undershoots as represented in the curve shown below. 

Optimum pulse shape? 

 
Figure 1.2  An "ideal" Readback Pulse from a disc drive 

Through acquisition of many digitized pulses, with varying pulse model parameters will eventually provide 
the necessary design parameters for an optimum pulse.  This would require many man-hours of time. 

Background of TFH Math Model 
for a Readback Pulse from Magnetic Recording 
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Magnetic recording of transitions written onto a computer disc drive may produce an isolated pulse as shown 
below.  This pulse comes from a disc drive's read-write channel.  Each transition will cause such a signal to 
occur. 

 
Figure 1.3  An isolated Readback Pulse from a 1980s disc drive 

The signal's shape is very important to the electrical engineering development groups of disc drives.  An 
isolated (readback) pulse should be symmetric and have a relatively fast rise time (i.e. sharp slope) for 
improved peak detection capability.  A math model for the pulse can help gain insight into what electronic 
sub-system/components are causing the pulse to be asymmetric or have a slow rise time. 

A Memorex physicist suggested that the longitudinal magnetic force was assumed the main contributing 
factor in determining a readback pulse shape, before the early 1980's.  This force component was modeled by 
a series of three Lorentz functions.  These functions have varying independent parameters that are dependent 
upon the drive's Thin-Film-Head (TFH) composition, size and shape.  The values for these parameters were 
helpful in understanding a design and pinpointing any manufacturing flaws. 

A Lorentz1 function has represented/modeled an isolated readback pulse for some time.  The basic Lorentz 

function is defined as y= 
1

1+x2.  The isolated pulse model is a composite of three Lorentz functions, called a 

Lorentzian series, as shown here: 
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Equation 1.1  Lorentzian Series 

where vi = Amplitude of ith Lorentzian pulse; 

pw_50i = Lorentzian pulse width, measured at 50% height of vi; and, 

t0i = Origin of the ith Lorentzian. 

In the early 1980s, this model was found to be inadequate when Thin-Film-Heads (TFH) were starting to be 
used in disc drives.  An examination of the math model versus actual data plots (see Figure 1.5 & 1.6 below) 
showed that the 1970s model (Figure 1.4) was no longer sufficient.  The longitudinal force, coupled with the 
increased vertical force, were used to provide an excellent model for TFH readback pulses (see Figures 1.6a 
below) in the mid 1980s.  This math model we called a Modified Lorentzian series, signal2, as shown here: 

                                                 
1 Hendrik Antoon Lorentz (July 18, 1853 –February 4, 1928) was one of the greatest Dutch theoretical physicists. He 
was the second Nobel laureate in physics, together with Pieter Zeeman. They received the prize in 1902 for the 
discovery (by Zeeman) and the explanation (by Lorentz) of the Zeeman effect, the splitting of spectral lines in a 
magnetic field.  Lorentz's main contribution to physics was in the theory of electromagnetism in which he continued and 
extended the work of the Scotsman James Clerk Maxwell. 
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Figure.1.3c  A perfect model to Odd 
data 
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Equation 1.2  Mod. Lorentzian Series 

where vi = Amplitude of ith longitudinal magnetic force; 

vci = Amplitude of ith vertical force component; 
pw_50i = Lorentzian pulse width, measured at 50% height of vi; and, 

t0i = Origin of the ith Lorentz function. 

 
Plots showing fit to a 1980s Thin-Film-Head data using Lorentzian & Modified Lorentzian series: 

            
Figure 1.4a  Lorentzian Series                Figure 1.4b  Mod. Lorentzian Series 

Right math model? 
 
How does one know when they have the right math model? 
 
During the next ‘head’ generation development, Memorex acquired 200 
isolated pulse datasets, each from a different head, and fit each one to see if 
our Modified Lorentzian series was good for all 200 heads.  All fit well 
including the one in Figure 1.4c that shows a ‘step’ on its right side.  This 
‘step’ was due to the magnetic bars / logs at the tip of the head not being 
parallel to each other.  Thus the Modified Lorentzian series became a new 
tool for finding defective heads.  Note: Only a few orange spots  (i.e. data 
points) are not hidden by green model points on this plot; a great fit! 

Future TFH models 

In Figure 3.2 Solution to Lorentz ODE it will be shown that model y2 =
1+vc*x

1+x2  is approximately equal to 

y1+vc2 *
dx

dy1 .  Knowing that the signal derivative is part of the TFH signal may help give someone an 

understanding of the magnetic property that causes this and hopefully eventually get it removed from the 
TFH performance.  Removing this effect would improve peak signal detection and thus save lost data on 
computers. 

Parameter Estimation Problem 
Find the parameter sets (vi, pw_50i and t0i) and (vi, vci, pw_50i and t0i) values necessary to fit the 

Signal1(t) and Signal2(t) models to a digitized isolated readback pulse.  The Readrit?.?00 data files to curve 

fit are included in our FC-Compiler application, download at https://goal-driven.net/apps/fc-compiler.html. 

 

Download: There is a freeware app available to try other CurvFit Math models. 
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Application Problem 1.1.1 

A Typical Readback Pulse from Magnetic Recording 

Problem Description 
Magnetic recording of transitions written onto a computer disc drive may produce Figure 1.3.  This pulse 
comes from a disc drive's read-write channel.  Each transition will cause such a signal to occur. 

A Lorentz function has represented/modeled an isolated readback pulse for some time.  The 1970s isolated 
pulse model was a composite of three Lorentz functions, called a Lorentzian series, as shown here: 
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Equation 1.3 Lorentzian Series 

where vi = Amplitude of ith Lorentzian pulse; 

pw_50i = Lorentzian pulse width, measured at 50% height of vi; and, 

t0i = Origin of the ith Lorentzian. 

Computer Code 
The FIND statement is the work horse of a Calculus-level compiler.  It calls ones math model as many times 
as necessary in order to converge on a solution.  It varies your parameters, in this case v, pw50 & t0, as it 
calls your math model.  The ‘in’ phase tells the name of math model routine to be used; the ‘by’ phase tells 
what solver to use, Ajax here; and the ‘to’ phase tells what the objective function is; ‘match’ means all 
following variables must equal zero, ‘sum’ in this case. 

FIND v, pw50, t0;      IN pulse;       BY AJAX;       TO MATCH sum 
 

graphics screen   ! real pulse from 1980s. 
Global All 
problem readrite 
  call setup 
  call pulse   ! Calc. array ‘error’ for plotting initial ‘fit’ 
C   plot signal & data vs. time 
  @aplot('rr-AJAX') 
 
  Find v, pw50, t0; in pulse; by AJAX; to match sum 
C   plot signal & data vs. time 
  @aplot('rr-AJAX') 
end 
model pulse 
  sum= 0 
  do 20 j= 1, npoints 
    call aLorentz( time(j), ampl) 
    error(j)=ampl-data(j): sum=sum+error(j)**2 
  20   continue 
end 
model aLorentz( t, ampl)     ! a Lorentz function 
  ampl= 0 
  do 10 i= 1, 3 
    x= (t - t0(i)) / (pw50(i)/2) 
    anum= v(i) – vc(i):     den= 1 + x**2 

    ampl= ampl + anum / den 
 10     continue 
end 
procedure setup 
  real v(3), vc(3), t0(3), pw50(3) 
  real data(100), time(100), error(100) 
  npoints=100 
  open(33, file= 'readrit1.100', status='old', err=99) 
  do 20 j=1, npoints 
    read(33,*) time(j), data(j) 
20 continue 
C initial values 
  t0(1)=-40:  t0(2)=0:     t0(3)=100 
  v(1)=-.05:  v(2)= .6:    v(3)= .1 
  vc(1)= 0:  vc(2)= 0:    vc(3)= 0 
  pw50(1)=70: pw50(2)=80:  pw50(3)=60 
  return 
99 write( 1, *) ' ---- Error ... Check Readrit1 data file --
--' 
  stop 
end 
 
o o o  (Download FC-Compiler 4 ‘readrite.fc’ code) 

Computer Plots 
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Figure 1.5a  Data vs.  Lorentzian Series  

Figure 1.5b  Lorentzian Fit Error Plot 

Computer Output for AJAX Solver: 
 
--- AJAX SUMMARY, INVOKED AT CURVEFIT[5] FOR MODEL PULSE ---- 
 
   CONVERGENCE CONDITION AFTER 20 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS UNSATISFIED 
      MAXIMUM ITERATIONS PERFORMED 
      SPECIFIED CRITERIA UNSATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   V(1) -5.000000E-02 3.731559E-02 -8.707396E-02 
   V(2) 6.000000E-01 5.912983E-01 7.650853E-01 
   V(3) 1.000000E-01 6.235979E-02 3.031518E-03 
   PW50(1) 7.000000E+01 4.953821E+01 -8.098887E+01 
   PW50(2) 8.000000E+01 5.518276E+01 5.464559E+01 
   PW50(3) 6.000000E+01 6.705979E+01 5.944982E+01 
   T0(1) -4.000000E+01 -8.684141E+01 -1.332593E+02 
   T0(2) 0.000000E+00 7.892900E+00 4.476611E+00 
   T0(3) 1.000000E+02 1.005717E+02 1.065703E+02 
 OBJECTIVE 
    ||G| 8.040932E-01 6.043591E-01 3.843734E-01 
 
 o o o 
 
 LOOP NUMBER ... [INITIAL] 19 20 
UNKNOWNS 
   V(1) -5.000000E-02 -1.385877E-01 -1.385877E-01 
   V(2) 6.000000E-01 7.768310E-01 7.768310E-01 
   V(3) 1.000000E-01 2.725261E-03 2.725263E-03 
   PW50(1) 7.000000E+01 -7.446407E+01 -7.446407E+01 
   PW50(2) 8.000000E+01 5.583736E+01 5.583736E+01 
   PW50(3) 6.000000E+01 -5.171349E+01 -5.171346E+01 
   T0(1) -4.000000E+01 -6.294041E+01 -6.294041E+01 
   T0(2) 0.000000E+00 4.507752E+00 4.507751E+00 
   T0(3) 1.000000E+02 1.437744E+02 1.437744E+02 
 OBJECTIVE 
    ||G|| 8.040932E-01 6.970203E-02 6.970202E-02 
 
---END OF LOOP SUMMARY 
 
=============== ErrSum=   0.069702      =============== 
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ELAPSED TIME=   22.69 SECONDS 

Findings 
The Lorentzian Series fit the 1980s Thin-Film-Head (TFH) data well except in the pre & post under shoots.  
Convergence was slow.  An improved math model was achieved by adding another term to the model, i.e. 

y2= 
21

1

xa

xvc




.  This improved model was called a Modified Lorentzian Series.  It will be used to fit this data 

in the Application Problem 1.1 below. 
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Application Problem 1.1.2 

An Unusual Readback Pulse from Magnetic Recording 

Problem Description 
This isolated (readback) pulse data set is unusual but helped solve a manufacturing problem when the model 
converged rapidly.  The ‘t03‘ parameter was found far to the right of where it normally was found.  Same 
math model used here as previous example. 

Using Statistical Process Control one should be able to find these unusual TFHs and reduce the TFH standard 
deviation to insure readability of computer media regardless of the TFH doing the writing being different 
from the TFH reading the media. 

Computer Code 
Same as previous example except input data file changed to ‘readrit2.200’. 

Computer Plots 

Figure 1.6a  Data2 vs. Lorentzian Series 
 

Figure 1.6b  Lorentzian2 Fit Error Plot 

Computer Output for AJAX Solver: 
 
--- AJAX SUMMARY, INVOKED AT CURVEFIT[5] FOR MODEL PULSE ---- 
 
   CONVERGENCE CONDITION AFTER  6 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   V(1) -5.000000E-02 -5.000000E-02 -3.974689E-02 
   V(2) 6.000000E-01 7.830934E-01 7.726742E-01 
   V(3) 1.000000E-01 1.804079E-01 1.971702E-01 
   PW50(1) 7.000000E+01 7.580762E+01 7.148666E+01 
   PW50(2) 8.000000E+01 7.313709E+01 7.429310E+01 
   PW50(3) 6.000000E+01 1.456453E+02 9.739544E+01 
   T0(1) -4.000000E+01 -4.348545E+01 -4.912990E+01 
   T0(2) 0.000000E+00 1.839443E-01 5.267177E-01 
   T0(3) 1.000000E+02 1.136435E+02 1.081967E+02 
 OBJECTIVE 
    ||G|| 8.178860E-01 1.300461E-01 4.984210E-02 
 
   ooo 
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 LOOP NUMBER ... [INITIAL] 5 6 
 UNKNOWNS 
   V(1) -5.000000E-02 -7.001261E-02 -7.000000E-02 
   V(2) 6.000000E-01 8.000095E-01 7.999999E-01 
   V(3) 1.000000E-01 1.999977E-01 2.000000E-01 
   PW50(1) 7.000000E+01 8.800782E+01 8.799999E+01 
   PW50(2) 8.000000E+01 7.700205E+01 7.700000E+01 
   PW50(3) 6.000000E+01 9.899785E+01 9.900000E+01 
   T0(1) -4.000000E+01 -3.999659E+01 -4.000002E+01 
   T0(2) 0.000000E+00 -2.703632E-04 -8.238145E-07 
   T0(3) 1.000000E+02 1.110008E+02 1.110000E+02 
 OBJECTIVE 
   ||G| 8.178860E-01 1.550908E-05 2.081722E-07 
 
---END OF LOOP SUMMARY 
 
=============== ErrSum=   0.000000      =============== 
 
ELAPSED TIME=   20.93 SECONDS 

Findings 
Excellent rate of convergence!  Nice error plot, Figure 1.6b, with relatively small amplitudes and sinusoidal!  
Parameter values seem reasonable.  These results suggest a good math model. 
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Application Problem 1.1.3 

A Typical Readback Pulse from Magnetic Recording 
with 

Improved Model 

Problem Description 

The longitudinal force, coupled with the increased vertical force, were used to provide an excellent model for 
TFH readback pulses in the mid 1980s.  This math model is called a Modified Lorentzian series, signal2, as 

shown here: 
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Equation 1.4 Modified Lorentzian Series 

where vi = Amplitude of ith longitudinal magnetic force; 

vci = Amplitude of ith vertical force component; 
pw_50i = Lorentzian pulse width, measured at 50% height of vi; and, 

t0i = Origin of the ith Lorentz function. 

Computer Code 
Same code here as last two examples with the addition of the ‘vc’ parameter; used ‘readrit1.100’ input file. 

FIND v, vc, pw50, t0;      IN pulse;       BY AJAX;       TO MATCH sum 

Computer Plots 

Figure 1.7a  Data vs. Mod. Lorentzian Series 
 

Figure 1.7b  Mod. Lorentzian Fit Error 
Plot 
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Computer Output for AJAX Solver: 
 
--- AJAX SUMMARY, INVOKED AT CURVEFIT[8] FOR MODEL PULSE ---- 
 
   CONVERGENCE CONDITION AFTER  5 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   V(1) -5.000000E-02 -1.381962E-01 -1.607859E-01 
   V(2) 6.000000E-01 7.551470E-01 7.206904E-01 
   V(3) 1.000000E-01 8.377075E-02 1.799287E-02 
   VC(1) 1.000000E-01 2.001194E-01 1.045891E-01 
   VC(2) 3.000000E-01 -1.549095E-01 -1.549095E-01 
   VC(3) -1.000000E-01 6.449508E-02 2.308462E-02 
   PW50(1) 7.000000E+01 7.539570E+01 6.622947E+01 
   PW50(2) 8.000000E+01 4.315916E+01 5.626274E+01 
   PW50(3) 6.000000E+01 4.891829E+01 6.349559E+01 
   T0(1) -4.000000E+01 -4.718956E+01 -4.813002E+01 
   T0(2) 0.000000E+00 9.886958E+00 9.161184E+00 
   T0(3) 1.000000E+02 8.846421E+01 8.549749E+01 
 OBJECTIVE 
   ||G|| 1.262701E+00 4.839664E-01 7.244569E-02 
 
   O o o 
 
 LOOP NUMBER ... [INITIAL] 5 
 UNKNOWNS 
   V(1) -5.000000E-02 -2.182126E-01 
   V(2) 6.000000E-01 7.879078E-01 
   V(3) 1.000000E-01 1.525311E-02 
   VC(1) 1.000000E-01 6.914184E-02 
   VC(2) 3.000000E-01 -2.256690E-01 
   VC(3) -1.000000E-01 6.358915E-02 
   PW50(1) 7.000000E+01 8.310151E+01 
   PW50(2) 8.000000E+01 6.285273E+01 
   PW50(3) 6.000000E+01 1.150560E+02 
   T0(1) -4.000000E+01 -4.910729E+01 
   T0(2) 0.000000E+00 9.232972E+00 
   T0(3) 1.000000E+02 5.936766E+01 
 OBJECTIVE 
   ||G|| 1.262701E+00 1.260813E-02 
 
---END OF LOOP SUMMARY 
 
=============== ErrSum=   0.012608      =============== 

Findings 
This Modified Lorentzian Series Model is definitely a better model than the Lorentzian Series shown in 
Application 1.1.1.  Excellent rate of convergence!  Figure 1.7b shows a nice error plot with relatively small 
amplitude and sinusoidal!  Parameter values seem reasonable.  These results suggest a good math model. 
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Application Problem 1.1.4 

An Unusual Readback Pulse from Magnetic Recording 
with 

Improved Model 

Problem Description 
Both Lorentzian & Modified Lorentzian models worked for this data set.  This isolated (readback) pulse data 
set is unusual but helped solve a manufacturing problem when the model converged rapidly.  Thus saying the 
model was good.  The t03 parameter was found far to the right of where it normally was found.  A parameter 
out of normal range suggests a manufacturing error. 

Using Statistical Process Control one should be able to find these unusual TFHs in manufacturing and reduce 
the TFH standard deviation to insure readability of computer media regardless of TFH writing being different 
from TFH reading media. 

Computer Code 
Same code used here as in last except added ‘vc’ parameter to ‘find’ statement as shown below; used 
‘readrit2.200’ input file. 

FIND v, vc, pw50, t0;      IN pulse;       BY AJAX;       TO MATCH sum 

Computer Plots 

 
Figure 1.8a  Data2 vs. Mod. Lorentzian 

Series 

 
Figure 1.8b  Mod. Lorentzian Fit2 Error 

Plot 

Computer Output for AJAX Solver: 
 
--- AJAX SUMMARY, INVOKED AT CURVEFIT[8] FOR MODEL PULSE ---- 
 
   CONVERGENCE CONDITION AFTER  7 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
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 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   V(1) -5.000000E-02 -9.348058E-02 2.624094E-02 
   V(2) 6.000000E-01 8.244893E-01 6.920350E-01 
   V(3) 1.000000E-01 2.412491E-01 2.337939E-01 
   VC(1) 1.000000E-01 2.178845E-03 -2.479759E-02 
   VC(2) 3.000000E-01 -2.658682E-02 5.868151E-02 
   VC(3) -1.000000E-01 1.195240E-01 -7.941819E-02 
   PW50(1) 7.000000E+01 7.348288E+01 6.460946E+01 
   PW50(2) 8.000000E+01 7.830094E+01 6.563130E+01 
   PW50(3) 6.000000E+01 9.186359E+01 1.236225E+02 
   T0(1) -4.000000E+01 -4.407704E+01 -5.687044E+01 
   T0(2) 0.000000E+00 8.737324E-01 -3.926429E-01 
   T0(3) 1.000000E+02 8.268578E+01 1.061227E+02 
 OBJECTIVE 
   ||G|| 1.016135E+00 2.766644E-01 2.134743E-01 
 
   ooo Good conversion … ||G|| dropping nicely each iteration! 
 
   LOOP NUMBER ... [INITIAL] 7 
   UNKNOWNS 
   V(1) -5.000000E-02 -5.832160E-02 
   V(2) 6.000000E-01 7.661447E-01 
   V(3) 1.000000E-01 2.022556E-01 
   VC(1) 1.000000E-01 3.971641E-02 
   VC(2) 3.000000E-01 -3.554289E-02 
   VC(3) -1.000000E-01 -2.529758E-03 
   PW50(1) 7.000000E+01 6.979697E+01 
   PW50(2) 8.000000E+01 7.661058E+01 
   PW50(3) 6.000000E+01 1.011313E+02 
   T0(1) -4.000000E+01 -3.629622E+01 
   T0(2) 0.000000E+00 1.058879E+00 
   T0(3) 1.000000E+02 1.109715E+02 
 OBJECTIVE 
   ||G|| 1.016135E+00 4.074845E-03 
 
=============== ErrSum=   0.0040785      =============== 
 
---END OF LOOP SUMMARY 

Findings 
This Modified Lorentzian Series model is as good a model as the Lorentzian Series shown in Application 
1.1.2.  Excellent rate of convergence!  Nice error plot with relatively small amplitude and sinusoidal!  
Parameter values seem reasonable.  These results suggest a good math model. 

Based on this odd data set and 199 ‘normal’ TFH data sets, the Modified Lorentzian Model was accepted as 
the model for 1980s TFH data.  Prior to this odd data set, manufacturing had an unknown error.  It was 
believed the problem was due to the TFH magnets called logs.  Every now and then these logs were thought 
to placed or grown where the logs were not parallel.  This odd data set, with a great fit to the TFH math 
model, were key to pin-pointing this manufacturing problem. 
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Application Problem 1.2 

Curve fitting: A Sinusoidal Signal 

Problem Description 
Fitting a sinusoidal series to data is a common problem.  We will attempt to due this and discuss our 
findings.  There are several numerical problems that one may incur.  One problem in such a model is a term 
like ai sin( 2 pi fi t + theta) that may cause a solver numerical difficulty when trying to find the next value 
for fi parameter.  If the parameter ai is too small, any change in the fi parameter will provide no change in the 
sin term.  Thus, no change will occur in ones frequency parameter, fi.  How does one get around this 
problem? 

 Choose a relatively large values for sine amplitudes, ai, before your search starts; and, 

 Use a spectral estimation program to find excellent starting frequencies value. 

Computer Code 
Added new parameters to find statement, ie. Amplitude, frequency, & theta, and changed solver to Jupiter.  
The objective function changed to MINIMIZE errsum 

FIND ampl, freq, theta;   IN pulse;   BY JUPITER;   TO MINIMIZE errsum 

Computer Plots 

 
Figure. 1.9a  Data3 vs. Initial Sine Series 

 
Figure 1.9b  Data3 vs. Sine Series 

 
Figure 1.9c  Sine Fit Error Plot 
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Computer Output for JUPITER Solver: 
 
 ------  Plotting initial parameters  -------- 
 AS IS to give you a feeling for starting point 
 
 Y-Axis offset (y0): 0.0000 
 Sine Amplitude (a): 1.000 1.000 1.000 1.000 
 Frequency (b): 32.00 13.00 8.000 38.00 
 Theta (c): 1.000 1.000 1.000 1.000 
 
           ErrSum=    118.8 
 
--- JUPITER SUMMARY, INVOKED AT FIT[21] FOR MODEL CURVE ---- 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 
 UNKNOWNS 
   Y0 0.000000E+00 -1.118512E-01 
   A(1) 1.000000E+00 3.030360E+00 
   A(2) 1.000000E+00 1.991858E+00 
   A(3) 1.000000E+00 4.011098E+00 
   A(4) 1.000000E+00 4.883314E-01 
   Freq(1) 3.200000E+01 3.199882E+01 
   Freq(2) 1.300000E+01 1.299809E+01 
   Freq(3) 8.000000E+00 7.999652E+00 
   Freq(4) 3.800000E+01 3.799466E+01 
   Theta(1) 1.000000E+00 8.465198E-01 
   Theta(2) 1.000000E+00 6.991173E-01 
   Theta(3) 1.000000E+00 2.765086E-01 
   Theta(4) 1.000000E+00 1.671551E+00 
 OBJECTIVE 
   ERRSUM 1.188445E+02 2.210174E-01 
 
---END OF LOOP SUMMARY 
 
=============== ErrSum=   0.221017      =============== 
 
ELAPSED TIME=    0.93 SECONDS 

Findings 
Sinusoidal curve fitting is hard to due.  Initial values for the frequencies are key to finding a good fit.  The 
first plot, Figure. 1.9a, was provided to show what one’s starting conditions look like.  In order to get good 
starting frequencies values, we executed the SpectrumSolvers program against our data set.  SpectrumSolvers 
shows where key frequencies peak.  We entered these peak locations in as starting frequency values and still 
had problems converging.  (This frequency problem is due to the program calculating the next values by 
using derivatives.  When changing a parameter value, a relatively small derivative value will suggest to the 
solver that no change will do any good.  So it moves on to the next parameter.  Frequency & Amplitude 
parameters are tied together.  If frequency is ok but amplitude is too small, this too may cause frequency 
changes to be too small.) 

Next, the solver was changed to Jupiter.  This finally got good convergence as shown in the plots above. 



 2011 Optimal Designs Enterprise General Algebraic Equations 23 

Application Problem 1.3 

Curve fitting: A Damped Sinusoidal Signal 

Problem Description 

A damped sinusoidal series is an extension of the last application.  Here an exponential is added to each sin 
term like ai sin( 2 pi fi t + theta) exp( di t).  Now the di parameter must be found along with the others.  
Starting value of zero for all di is recommend.  That tells a solver that you don’t want this parameter unless 
necessary. 

Computer Code 
A new parameter, d, was added to others used without damping, i.e. Amplitude, frequency, & theta, and 
switched solver to Jupiter.  The objective function remained the same. (see sinusoid.fc file in FC-Compiler 
application for code). 

FIND ampl, freq, theta, d;   IN pulse;    BY JUPITER;   TO MATCH error And MINIMIZE errsum 

Computer Plots 

 
Figure 1.10a  Data vs. Initial Damped Sine Series 

 
Figure 1.10b  Data vs. Damped Sine Series 

 
Figure 1.10c  Damped Sine Fit Error Plot 
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Computer Output for JUPITER Solver: 
 
~~~ AT EQU[72]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.44E+04) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
~~~ AT EQU[72]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E. 0.49E+04) IS REPLACED 
BY THE LIMIT ( 0.10E+03) 
 
 o o o (many Out-of-Range) error stmts!!! 
 
~~~ AT EQU[72]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.13E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
 
--- JUPITER SUMMARY, INVOKED AT FIT[23] FOR MODEL CURVE ---- 
 
   CONVERGENCE CONDITION AFTER  2 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   Y0 0.000000E+00 -9.572788E-02 -9.572788E-02 
   A(1) 1.000000E+00 3.523554E+00 3.523554E+00 
   A(2) 1.000000E+00 8.715959E-01 8.715959E-01 
   A(3) 1.000000E+00 4.938423E+00 4.938423E+00 
   A(4) 1.000000E+00 5.492916E-02 5.492916E-02 
   Freq(1) 3.194670E+01 3.199966E+01 3.199966E+01 
   Freq(2) 1.304430E+01 1.300479E+01 1.300479E+01 
   Freq(3) 8.045260E+00 7.999537E+00 7.999537E+00 
   Freq(4) 3.788300E+01 3.788534E+01 3.788534E+01 
   Theta(1) 1.000000E+00 1.329229E+01 1.329229E+01 
   Theta(2) 1.000000E+00 -6.539949E+00 -6.539949E+00 
   Theta(3) 1.000000E+00 -1.227504E+01 -1.227504E+01 
   Theta(4) 1.000000E+00 -7.677276E+00 -7.677276E+00 
   D(1) 0.000000E+00 -6.694871E-03 -6.694871E-03 
   D(2) 0.000000E+00 3.577547E-02 3.577547E-02 
   D(3) 0.000000E+00 -9.009829E-03 -9.009829E-03 
   D(4) 0.000000E+00 9.207383E-02 9.207383E-02 
 OBJECTIVE 
   ERRSUM 1.747659E+02 3.487218E-01 3.487218E-01 
 
---END OF LOOP SUMMARY 
 
=============== ErrSum=   0.348721      =============== 
 
ELAPSED TIME=    6.82 SECONDS 

Findings 
Excellent rate of convergence!  Figure 1.10c shows a nice error plot with relatively small amplitude and 
somewhat sinusoidal!  Parameter values are reasonable.  This example’s results suggest a good math model. 

Do you have a better approach to this problem?  Try it out with the FortranCalculus compiler. 
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1.4 Conclusion on Curve Fitting 
Why curve fit data?  It has the effect of 

 Reducing number of data points to a few (hopefully) meaningful data points; i.e. parameter 
estimation values.  These estimated values can then be compared with other estimated values.  If 
some parameter values seem to stand out, then one might investigate as to why.  This led a Memorex 
department to find a manufacturing flaw that had gone unsolved for a long time.  (A major reason in 
forcing Memorex to fold.); 

 Reducing noise in datasets; and, 

 Helps compare datasets. 

For example, say you have 100 channels that you want to compare.  Take each channel and curve fit 20 to 
100 points as a dataset every tstep units of time finding say n-parameter values for each dataset.  Now plot 
these n-parameters on separate plots with parameter versus time.  Are these plots a function of time and 
smooth curves?  See any points that stick out?  If so, are these points in error for some known reason?  Work 
your way over all these plots and validate them by eye. 

Next, compare the ith and jth channels.  Do they seem to flow together as you would expect?  Sometimes 
plotting the difference of channels may be helpful; e.g. the kth parameter value of ith minus jth channels. 

Their may be a lot of work here but sometimes you have no other option.  Comparing parameters gives one 
an understanding of their system that others may understand; i.e. it improves communication. 
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Application Problem 1.5 

Pharmacokinetics
2

 

Problem Description 
 A Pharmacokinetics open-two-compartment model with first order absorption into elimination from central 
compartment (blood cleared of drug through the liver and/or kidneys) is presented here.  The body tissues 
utilize the drug and therefore an amount is removed by the body's filtering system, i.e. the liver and/or 
kidneys.  Given a dozen data points, find the parameter values to minimize ‘sum’ variable while limiting 
parameter values; i.e. a curve fitting application. 

K
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CompartmentCompartment
1 2----------------------------

PLASMA TISSUES

 

Rate of change in compartments is stated by the following differential equations: 

dA

dt
K A K A K A K Aa

1
0 21 2 12 1 10 1     Plasma compartment 

 
dA

dt
K A K A2

12 1 21 2   Tissue compartment 

 
where Ky represent Rate constants;  y = a, 10, 12, and 21; 

Ai = Amount of drug at the ith site: 0. Absorption site; 1. Compartment 1; and 2. Compartment 2. 

This system of differential equations can be solved analytically using La Place transforms.  These solutions 
are usually expressed in terms of drug concentrations (i.e., parameters A, B, & C).  The model equation for 
compartment 1 is 

Cp t A e e C et t K ta( )      B  
C = - ( A + B ) 

where Cp(t) is the plasma concentration at time t; 
and  &  are hybrid parameters derived from K12, K21, K10, and Ka. 

The half-life of  is constrained to the range of three to nine years, and thus, adds the two constraints:  
Half_life  3 and  9 years where the Half_life = ln(2) /  

Relative error in this curve fitting problem was chosen due to the huge swing in amplitude over time. 

 

 Note: this can also be classified as an inverse problem: you know what you want, just don’t know how to get 
there. 

                                                 
2 Combs, D. 
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Computer Code 
Global All 
Problem Pharmaco  ! Kinetic parameters for open-two-compartment model 
  dimension Time( 12), Plasma( 12), Error( 12), Half(2), aLows(5) 
! Observed plasma concentrations ... Oral tablet of 10 mg 
  data Time/0, .333, .5, .667, 1, 2, 4, 6, 8, 12, 24, 32/    ! X-Data 
  data Plasma/1.e-4, .657, .727, .763, .695, .51, .307, .161,  & ! Y-Data 
    .135, .046, .021, .008/ ! X-Units=Hr. & Y-Units=Mcg/Ml 
  data aLows/ 5*0.D0/, Half/ 2*0.D0/ 
  Npoints = 12:   x = 1 
!  Write(1,*) ' Enter Initial Starting Value ... ' 
 ! Read *, X 
  A=X:  B=X:  aKa=X:  Alpha=X:  Beta=X     ! Initial Values 
  Find A,B,aKa,Alpha,Beta; In Concentr; By Jupiter;  & 
      With Lowers aLows; Holding Half; To Minimize Sum 
End 
Model Concentr ! Concentration In Compartment 1 
  Sum=0 
  Do 10 i=1, Npoints 
    T=Time(i) 
    C1=A * Exp( - Alpha * T) 
    C2=B * Exp( - Beta * T) 
    C=-(A + B) 
    C3=C * Exp( - aKa * T) 
    Cpt=C1 + C2 + C3 
    Error(i)=(Plasma(i) - Cpt) / Plasma(i) 
    Sum=Sum + Error(i)**2 
10  Continue 
  Halflife=Log( 2) / Beta 
  Half(1)=Halflife - 3    ! 3 Years Minimum 
  Half(2)=9 - Halflife    ! 9 Years Maximum 
End 

Computer Output for JOVE Solver: 
 
   Ooo 
 
~~~ AT CONCENTR[22]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.10E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
~~~ AT CONCENTR[22]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.14E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
 
 
--- JUPITER SUMMARY, INVOKED AT PHARMACO[14] FOR MODEL CONCENTR ---- 
 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER ... [INITIAL] 1 
 UNKNOWNS 
   A 1.000000E+00 8.955288E-01 
   B 1.000000E+00 1.071583E-01 
   AKA 1.000000E+00 4.269202E+00 
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   ALPHA 1.000000E+00 3.601325E-01 
   BETA 1.000000E+00 7.863350E-02 
 OBJECTIVE 
   SUM 1.200000E+01 1.132438E+00 
 INEQUALITY CONSTRAINTS 
   HALF(1) -2.306853E+00 5.814910E+00 
   HALF(2) 8.306853E+00 1.850905E-01 
 
---END OF LOOP SUMMARY 
 
ELAPSED TIME =    0.11 SECONDS 
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Application Problem 1.6 

Slack Variable Techniques 
(From a PROSE manual) 

Finding Feasible Solutions 

Slack variable techniques can also be used to achieve initial feasibility (or maintain it) in inequality 
constrained nonlinear programs.  Such applications generally lead to an underdetermined system of 
equations.  It can be pointed out that underdetermined systems have no unique solution.  Thus, the solution 
to a set of inequalities is merely the nearest of a set of points in a feasible subspace of (x1, ..., xn) bounded 

by the inequality constraints.  However, finding any point in this subspace, i.e., any feasible point, is an 
important initial step in constrained optimization, or may be employed as a substep of an unconstrained 
optimization search in order to solve a constrained optimization problem. 

The following FC code can be used to solve the (slack) system of inequalities. 
Problem Constraints 
   n=???:   m=???:   allot x(n), z(m), g(m) 
   for j = 1 to m,   z(j) = 1 ! Initial values 
   Find x, z;   In Slack;  By Ajax;   To Match g 
end 
Model Slack 
   execute Ineqls 
   for j = 1 to m,   g(j) = g(j) - z(j)**2 
end 
Model Ineqls 
   g(1) = G1(x1, x2, ..., xn) ! system of inequalities; e.g. x1 – 3*x2 > 0 

   o 
   o 
   o 
   g(m) = Gm(x1, x2, ..., xn) 

end 

In this code, the slack variables (z) are initialized to unity.  This is not necessary in general, but for certain 
functions, and particular choices of initial guesses for the original n variables, the resulting Jacobian matrix 
may be exactly the zero matrix unless the slack variables are given non-zero initial values. 

For example, consider the following system of inequality constraints: 

   (x1 - 1)2 + (x2 - 1)2  - 4    0 
 4(x1 - 2)2 + 25(x2 + 1)2  -  100    0 
 x1 - x2 - .4    0 
 x1    0 
 x2    0 

Given an infeasible starting point, x1 = -100, x2 = -150, it is desired to find the nearest feasible point 

satisfying the inequalities.  The FC program for this problem, a modification of the previous code, is shown 
below. 

 
Problem Constraints 
  execute .setup 
  for j = 1 to m,   z(j) = 1 
  Find x, z;   In Slack;   By Ajax( Knobs);   To Match g 

end 
Model Slack 
  execute .ineqls 
  for j = 1 to m   g(j) = g(j) - z(j)**2 
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end 
Model ineqls 
  g(1) = (x(1) - 1)**2 + (x(2) - 1)**2 - 4 
  g(2) = 4*(x(1) - 2)**2 + 25*(x(2) + 1)**2 - 100 
  g(3) = x(1) - x(2) - .4 
  g(4) = x(1) 
  g(5) = x(2) 
End 

Controller Knobs   For AJAX 
  converge = 2 maxit = 40 
end 
Procedure Setup 
  m = 5 
  allot x(2), z( m), g( m) 
  x = .data( -100, -150) 
End 
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Application Problem 1.7 

Paper Bicycle Design 
(Objective-Driven Design Example) 

What’s your present project’s goal/objective? 

 

Are you sure?  Why? 

What is the ideal or desired objective/goal?  Are you sure?  Why? 

A class in Mechanical Engineering at Stanford requires its students to design a Paper Bicycle.  A student’s 
grade is dependent on their bicycles lap times, total weight, and a penalty when their non-paper parts weight 
is more than 10% of their total weight.  The lower the score the better for ones grade! 

What would be the design objective given each 3 member team has (a time constraint of) 
2 weeks to build a team, design, test, and race their paper "bicycle"? 

1. Minimize the design weight; 
2. Maximize each individual's class grade; 
3. Minimize the total lap times, i.e., win the race! 
4. Minimize cost of design project; 
5. Minimize time required for design 
6. _________________________ 

Assume a design team chose the "win the race" objective.  A math model or analysis for their design might 
be as follows: 

TotalTime < 5.4321 minutes, since this was last years champions time. 

TotalDistance = 900 Meters 

RPM = 60, a "reasonable" average rate for cyclist on given course 



 2011 Optimal Designs Enterprise General Algebraic Equations 32 

DistPerRev = Circumference of drive wheel =  Diameter 

Therefore, a Diameter great than TotalDistance/( RPM TotalTime) will ensure a time faster than last 
year's champions, assuming it holds together throughout the race.  For this case, the 

   Diameter = 900/( * 60 * 5.4321) 
                   = .88 Meters or larger 

What type of paper "bicycle" will perform with the desired drive wheel?  A two wheeler is out due to cost 
and time constraints.  A wheel chair option is out due to the required drive wheel must average 60 rpm, thus, 
leaving a three wheel cycle or "Hot Wheeler" similar to what young kids ride, today. 

Given the Win objective, what parameters or reasoning will determine the following: 

1. Maximum drive wheel size; 
2. Maximum surface friction between the drive wheel and race track; 
3. Remaining geometry and size of bike components. 

Race results: They won!  The Win team had a well stated objective target, not to shoot at, but calculate and 
achieve the required design through math modeling, analysis, and good reasoning.  Generally, an objective-
driven design will yield the best design in the least amount of development/manufacturing time and expense. 
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Chapter 1 Exercises 

1. What can a user do to increase accuracy of a solution when entering data for a problem?  See 
‘readrit1.100’ File Listing for ideas. 

2. Constant values, e.g. , should be calculated instead of entered whenever possible in order to keep 
overall calculations as accurate as possible.  What equation could be used to calculate ?  

3. Curve fit data file ‘readrit1.100’ with below series and same parameters as in applications 1.1.1. Do 
your problems converge to a solution? Is the error plot sinusoidal? Try another solver or two to see if 
things improve. 

a. Expand the Lorentz function to 1/( 1 + x2 + x4) and curve fit it to the data. Thus, signal1 
becomes 
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See Equation 1.3 Lorentzian Series for simplified version and parameter 
definitions. 

b. Use a series of exponentials, e-x2
 and same parameters as above. 

c. Other functions: your turn to find a function that would fit the data; e.g. sine series, or power 
series or ???. 

4. Curve fit data file ‘readrit2.200’ with below series and same parameters as in applications 1.1.2. Do 
your problems converge to a solution? Is the error plot sinusoidal? Try another solver or two to see if 
things improve. 

a. Use an expanded Lorentz function to (1+x)/( 1 + x2 + x4). Thus, signal2 becomes 
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See Equation 1.4 Modified Lorentzian Series for simplified version and parameter definitions. 

b. Use a series of exponentials, (1+x)e-x2
 and same parameters as above. 

c. Other functions: your turn to find a function that would fit the data; e.g. sine series, or power 
series or ???. 

5. Assume you are responsible for determining what thin-film-heads (TFHs) are good in a production 
line.  Over one hundred TFHs are produced a day.  Using ‘readrit1.100’ results as good, develop a 
logic function for a pass/fail test. The function should be dependent of some or all of the parameters 
found in the above problems.  Assume a 10% variance of ‘readrit1.100’ parameters is still okay but 
more than that should fail your test.  Test ‘readrit2.200’ parameters to be sure it fails your test.
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2 La Place Transforms 

A Parameter Estimation for LaPlace Transforms in a Calculus-level ‘Find’ statement  is shown 
here: 

FIND a   ooo   To Match Error 

Where ‘a’ may be a vector with ‘n’ parts, a1, a2, a3,…an; 
 ‘error’ is the objective function. 

The ‘a’ parameter(s) are varied to fit one’s ‘m’ data points that make up the objective function, 
error.  This technique can vary as many parameters as you want; e.g. 5 or 50 or 50,000.  If there are 
less equations than parameters m < n, this would be classified as an under-determined system of 
equations.  If there are more equations than parameters, m > n, this would be an over-determined 
system.  Under- or Over-determined systems might force one to switch solvers to do the job. 

 
 
 
 
 
 
 

Application Problem 2.1 

Optimum Matched Filter (Transfer Function) 
(Nested Processes ... Each Process controlled by a Solver) 

Problem Description 
The transfer function H(s) is the Laplace transform of the output signal Yout(s)* divided by the Laplace 

transform of the input signal Yin(s)*: that is H(s)= 
Yout(s)

Yin(s)   where each signal's transform is assumed to be a 

ratio of polynomials.  Thus, H(s) can likewise be stated in the form: 

H s
a a s a s a s

b b s b s b s
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Equation 2.1  Generalized H(s) 

Assuming the numerator and denominator can be factored, yields H(s) in the general form 

H s
a s Z s Z s Z

b s P s P s P
m m

n n
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Equation 2.2  Factored Transfer Function 

where each Zi is known as a "zero" and the Pi as a "pole" of the transfer function.  Zi and Pi are complex 

points in the Laplace domain.  
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A realizable transfer function must have poles and zeros with their conjugate points.  That is, poles and zeros 
come in pairs.  If a pole or zero is located at the complex point i + ji, then its conjugate is located at i - 

ji.  Thus, a generalized transfer function is stated as 

H s gain

s Z s Z s Z s Z s Z s Z s Z s Z

s P s

p p
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Z Pairs

q q q q
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Equation 2.3  Generalized Transfer Function H(s) 

Given n-data points from a Bode plot (see Figure 2.1 below) that define the mainlobe of the desired transfer 
function, find the optimal Pole/Zero constellation such that H(s) has equal sidelobe peak amplitudes in a 
Bode plot and curve fits the given data in the mainlobe. 

Bode Plot: Mainlobe with 3 Sidelobes 

Mainlobe Sidelobes 

 
0  Z1  Z2  Z3 jW 

Frequency 
Figure 2.1  H(s) Mainlobe & Sidelobe Plot 

To help view what’s going on, think of the LaPlace domain covered with a rubber matt and pinned on its 
corners.  From the under side, in the ‘mainlobe’ area, place one’s poles (i.e. push up the rubber matt at these 
locations).  This should give the impression of a hill or mountain.  Place your zeros on the frequency axis by 
pressing down from the top at your zero locations (i.e. z1, z2, &z3 points as shown above on the bode plot).  
Now if you cross cut the rubber matt on the frequency axis and you should have the bode plot above. 

The objective is to keep the mainlobe ‘mountain’ while moving your zeros in order to get equal peak heights 
in your sidelobes.  Sounds simple but a slight movement in those zeros changes the peak heights radically.  
See Figure 2.2b and note how far down these peaks are in amplitude: farther down, less noise in system. 
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Computer Plots 

 
Figure 2.2a  H(s) Pole/Zero Locations 

 
Figure 2.2c  Data vs. H(s) Model Curves 

 
Figure 2.2b  Equal Peaks in Sidelobes 

 
Figure 2.2d  H(s) Fit Error Plot 

Computer Code 
The first FIND statement is used to find good values for mainlobe parameters gain, p.real, p.imag 

FIND gain, p.real, p.imag;      IN Laplace.Domain;       BY AJAX;       TO MATCH error 

With good mainlobe parameters, then this above find statement executes two nested Find statements to find 
the sidelobe parameters. 

FIND x.zeros   IN .Stopband   BY HERA      WITH BOUNDS side.limits      TO MINIMIZE peak.diff 
 
  PROBLEM FILTER(40000, 5000, 5000)  ! Match-n-
Freq (tm) 
C --------------------------------------------- 
C --- FORTRANCALCULUS Application: Find 
Pole/Zero Constellation of a --- 
C    Matched Filter Transfer Function  --- 
C --------------------------------------------- 
  call input 
C ---- Find Pole-Zero Locations ---- 
  nYzeros=0:  call fit   ! Don’t vary yZeros yet. 
  Yzeros8n= 1.6 * ylmax 
  nYzeros= 3:  call fit   ! Now vary yZeros 
  call output 
end 

model fit  ! Minimize Magnitude fit Error 
C - Varying Gain & Pole/Zero locations - 
  n= 1 + (nXpole+2*nPpairs) + nXzero + 
2*(nZpairs+nZquads) 
  allot h8low( n):   <h8low>= xlmin:  h8low(1)= 0 
  allot h8hi( n):   <h8hi>= ylmax:  h8hi(1)= -1 
 
  FIND gain,Xzero, Preal, Pimag;  & 
   in Transfer;  by JOVE(contrl1);  & 
   with lower h8low;  and uppers h8hi;  & 
   MATCHING error; TO MINIMIZE errsum 
 
  endif 
end 
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model Transfer 
  errsum= 0.D0 
  do 50 ii= 1, npoints  !  --- CALCULATE TRANSFER 
FUNCTION ---- 
    Y2=freq(ii)**2:  hw=xfunct(Y2) 
    error( ii)= gain * hw * y8in( ii) - y8out( ii)   ! 
Absolute Error 
    error(ii)= error(ii)/(y8out( ii)**ierrtyp)   ! Relative 
    errsum= errsum + error( ii)**2 
50  continue 
  if( nYzeros .gt.2) call sideArea 
end 
Fmodel xfunct( Y2) 
  real*8 num 
  num= 1:    den= 1 
  do 20 ij= 1, nPpairs 
    den= den*factor(Y2,-Preal(ij), Pimag( ij)) 
20  continue 
  if( nYzeros .gt. 0) then 
    num= 100 * num 
    do 40 ij= 1, nYzeros 
      num= num * factor( Y2, 0., Yzeros(ij)) 
40  continue 
  endif 
  q= num / den 
  if( q .gt. 1.D20) q= 1.D20 
  xfunct= q 
end 
Fmodel factor( y2, sigma, omega) 
  r2= sigma**2 
  if( omega .eq. 0.D0) then 
    factor= 1: if( sigma .eq. 0.D0) return  ! not sure 
on value 
    factor= (y2 + r2) / r2  ! R2 normalizing factor 
    return 
  endif 
  o2= omega**2:  sum=(r2+o2+y2)/10 
  temp= sum*sum - 4*y2*o2/100:  factor= 0 
  if( temp .eq. 0.D0) return 
  temp= sqrt( temp) 
  factor= temp / (r2 + o2)  ! this R2+O2 is 4 
normalizing pole values 
end  ! and adjusts Gain value for system. 
 
model sideArea 
  n1= nYzeros-1 
  do 20 ij= 1, n1 
    if(Yzeros(ij).ge.Yzeros(ij+1)) then 
      tmp=Yzeros(ij):  Yzeros(ij)= Yzeros( ij+1) 
      Yzeros( ij+1)= tmp 
    endif 
20 continue 
  do 30 ij= 2, n1 
    sidelims(ij-1)=Yzeros(ij+1)- Yzeros( ij) 
    peakloc(ij)=(Yzeros( ij+1) + Yzeros( ij))/2  *.95 
30  continue 
  peakloc( 1)= (Yzeros( 2) + Yzeros( 1))/2  *.95 
  peakloc( nYzeros)= (ylmax + Yzeros( nYzeros))/ 1.5 

  sidelims( n1)= ABS( ylmax - Yzeros( nYzeros)) 
  do 40 ij= 1, n1 
    sidelims( ij)= sidelims( ij)*ij/(nYzeros * 5) 
    Yzeros2( ij)= Yzeros( ij+1) 
40 continue 
 
  FIND Yzeros2;  in stopband;  by Hera( contrl2); & 
     with BOUNDS sidelims; & ! BANDLIM; 
     TO MINIMIZE diff 
 
  do 50 ij= 1, n1 
    Yzeros( ij+1)= Yzeros2( ij) 
    if( Yzeros(ij) .ge. Yzeros( ij+1)) then 
      tmp= Yzeros( ij):  Yzeros( ij)= Yzeros( ij+1) 
      Yzeros( ij+1)= tmp 
    endif 
50  continue 
end 
model stopband 
  do 50 jj= 2, nYzeros 
    Yzeros( jj)= Yzeros2( jj-1) 
50 continue 
  diff= 0:   sidelim= .02 
  do 60 jj= 1, nYzeros 
    ipeak= jj 
    if( jj .gt. 1) then 
      sidelim= sidelims( jj-1) 
    endif 
 
   FIND peakloc( jj);  in sidelobe;  by hera( contrl3); & 
     with BOUNDS sidelim; & 
     TO MAXIMIZE peakampl( jj) 
 
    diff= diff + slope( jj)**2 
    if( jj .gt. 1) then 
      anorm= peakampl( jj)**2 + peakampl( jj-1)**2 
      diff= diff + (peakampl( jj) - peakampl( jj-1))**2 / 
anorm 
    endif 
60 continue 
  anorm= peakampl( 1)**2 + peakampl( nYzeros)**2 
  diff=diff+(peakampl(1)-peakampl( nYzeros))**2 / 
anorm 
  diff= diff * 1.d6 
  peakave= 0:   errsumpk= 0 
  do 70 jj= 1, nYzeros 
    peakave=peakave+dabs(peakampl( jj)) 
 70 continue 
  do 80 jj= 1, nYzeros 
    peakerr(jj)=peakave - peakampl( jj) 
    errsumpk=errsumpk+(peakerr(jj) / anorm)**2 
80 continue 
end 
model sidelobe 
  peakampl(ipeak)=sideAmpl( peakloc( ipeak)) 
  ampl1=sideAmpl(.9999*peakloc(ipeak)) 
  ampl2=sideAmpl(1.0001*peakloc( ipeak)) 
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  slope(ipeak)=1.D6*(ampl1-ampl2)/ .0002   ! Slope 
approx. 
end 
Fmodel sideAmpl( Y) 
  Y2= Y * Y:  sideAmpl= xfunct( Y2) 
end 
controller contrl1( JOVE) 
  remax=maxit(1):  detail=ireport(1):  zero=ch8tol(1) 

  stepslim=limsteps:  stepout=stepout2:  
evalmax=maxeval 
  accuracy=accurcy 
end 
controller contrl2( Hera) 
  remax=maxit(2):  detail=ireport(2):  
progress=ch8tol(2) 
  adjust= 1:  summary= 1 
end 

Computer Output for JOVE & HERA Solvers: 
 
--- JOVE SUMMARY, INVOKED AT FIT[63] FOR MODEL FITBOTH ---- 
 
   CONVERGENCE CONDITION AFTER  5 ITERATIONS 
      MODEL EVALUATION LIMIT EXCEEDED 
      OBJECTIVE CRITERION UNSATISFIED 
      MAXIMUM ITERATIONS PERFORMED 
      SPECIFIED CRITERIA UNSATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   GAIN 1.230000E-02  2.426167E-05 2.452567E-05 
   PREAL( 1)  2.000000E-01 7.549617E-01 7.562047E-01 
   PREAL( 2)  2.000000E-01 7.577069E-01 7.562061E-01 
   PREAL( 3)  2.000000E-01 7.559795E-01 7.562061E-01 
   PREAL( 4)  2.000000E-01 5.001370E-03 5.017036E-03 
   PIMAG( 1)  1.000000E-02  5.002709E-03 5.033684E-03 
   PIMAG( 2)  1.000000E-01 5.000923E-03 5.011472E-03 
   PIMAG( 3)  2.000000E-01 5.000739E-03 5.009188E-03 
   PIMAG( 4)  3.000000E-01 3.000000E+00 2.999494E+00 
 OBJECTIVE 
   ERRSUM 2.246747E+04 1.386396E+01 1.386382E+01 
 EQUALITY CONSTRAINTS 
   ERROR( 1)  4.664578E-03 1.812689E-06 1.912965E-06 
   ERROR( 2)  3.036344E-03 -5.624263E-07 -4.925001E-07 
   ooo 
   ERROR(25) -1.157844E-18 -1.084009E-18 -1.083120E-18 
 
   ooo 
 
 LOOP NUMBER ... [INITIAL] 5 
 UNKNOWNS 
   GAIN 1.230000E-02  2.451293E-05 
   PREAL( 1)  2.000000E-01 3.134831E-01 
   PREAL( 2)  2.000000E-01 6.712762E-01 
   PREAL( 3)  2.000000E-01 4.565040E-01 
   PREAL( 4)  2.000000E-01 5.250445E-02 
   PIMAG( 1)  1.000000E-02  3.674824E-01 
   PIMAG( 2)  1.000000E-01 4.785724E-02 
   PIMAG( 3)  2.000000E-01 5.398629E-03 
   PIMAG( 4)  3.000000E-01 7.671278E-01 
 OBJECTIVE 
   ERRSUM 2.246747E+04 7.207860E-01 
 EQUALITY CONSTRAINTS 
   ERROR( 1)  4.664578E-03 1.908127E-06 
   ERROR( 2)  3.036344E-03 -4.879579E-07 
   ooo 
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   ERROR(25) -1.157844E-18 -1.154290E-18 
 
---END OF LOOP SUMMARY 
 
   ooo 
 
---- HERA SUMMARY, INVOKED AT SIDEAREA[180] FOR MODEL STOPBAND ---- 
 
   CONVERGENCE CONDITION AFTER  2 ITERATIONS 
      UNKNOWNS CONVERGED 
      OBJECTIVE CRITERION UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   YZEROS2(1) 1.500000E+00 1.525001E+00 1.525000E+00 
   YZEROS2(2) 2.200000E+00 2.060394E+00 2.060395E+00 
 OBJECTIVE 
   DIFF 5.476185E+18 8.586592E+06 1.890314E+06 
 
---END OF LOOP SUMMARY 
 
---- HERA SUMMARY, INVOKED AT SIDEAREA[180] FOR MODEL STOPBAND ---- 
 
   CONVERGENCE CONDITION AFTER  3 ITERATIONS 
      UNKNOWNS CONVERGED 
      OBJECTIVE CRITERION UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   YZEROS2(1) 1.525000E+00 1.483725E+00 1.483717E+00 
   YZEROS2(2) 2.060395E+00 1.958406E+00 1.958428E+00 
 OBJECTIVE 
   DIFF 2.453228E+16 2.538071E+06 1.887044E+06 
 
 LOOP NUMBER ... [INITIAL] 3 
 UNKNOWNS 
   YZEROS2(1) 1.525000E+00 1.483717E+00 
   YZEROS2(2) 2.060395E+00 1.958429E+00 
 OBJECTIVE 
   DIFF 2.453228E+16 1.885848E+06 
 
---END OF LOOP SUMMARY 
 
   O o o 
 
--- JOVE SUMMARY, INVOKED AT FIT[63] FOR MODEL FITBOTH ---- 
 
   CONVERGENCE CONDITION AFTER  5 ITERATIONS 
      OBJECTIVE CRITERION UNSATISFIED 
      MAXIMUM ITERATIONS PERFORMED 
      SPECIFIED CRITERIA UNSATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   GAIN 2.451838E-05 2.451843E-05 2.451824E-05 
   PREAL( 1) 1.903761E-01 1.900577E-01 1.898417E-01 
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   PREAL( 2) 2.174091E-01 2.170316E-01 2.167918E-01 
   PREAL( 3) 2.261904E-01 2.258044E-01 2.255600E-01 
   PREAL( 4) 6.035538E-03 6.026419E-03 5.945594E-03 
   PIMAG( 1) 4.643045E-01 4.642716E-01 4.643402E-01 
   PIMAG( 2) 2.736201E-01 2.736099E-01 2.736497E-01 
   PIMAG( 3) 8.978034E-02 8.977338E-02 8.978452E-02 
   PIMAG( 4) 5.907978E-01 5.906571E-01 5.902591E-01 
 OBJECTIVE 
   ERRSUM 1.604998E-01 1.604787E-01 1.604562E-01 
 EQUALITY CONSTRAINTS 
   ERROR( 1) 1.910196E-06 1.910216E-06 1.910143E-06 
   ERROR( 2) -4.901276E-07 -4.901482E-07 -4.901328E-07 
   ooo 
   ERROR(25) -1.165042E-18 -1.165045E-18 -1.165047E-18 
 
   ooo 
 
 LOOP NUMBER ... [INITIAL] 5 
 UNKNOWNS 
   GAIN 2.451838E-05 2.451764E-05 
   PREAL(1) 1.903761E-01 1.904776E-01 
   PREAL(2) 2.174091E-01 2.177901E-01 
   PREAL(3) 2.261904E-01 2.266766E-01 
   PREAL(4) 6.035538E-03 5.000000E-03 
   PIMAG(1) 4.643045E-01 4.656372E-01 
   PIMAG(2) 2.736201E-01 2.742334E-01 
   PIMAG(3) 8.978034E-02 8.995914E-02 
   PIMAG(4) 5.907978E-01 5.862881E-01 
 OBJECTIVE 
   ERRSUM 1.604998E-01 1.596411E-01 
 EQUALITY CONSTRAINTS 
   ERROR(1) 1.910196E-06 1.909913E-06 
   ERROR(2) -4.901276E-07 -4.890354E-07 
   ooo 
   ERROR(25) -1.165042E-18 -1.165045E-18 
 
---END OF LOOP SUMMARY 
 
----------------------------- ExYzero.1 
 Resulting Parameters in De-normalized form: 
               ------ 
 
 Pole-pairs 
 ---------- 

PREAL PIMAG 
  1. -3.809552E+00 9.312744E+00 
  2. -4.355801E+00 5.484667E+00 
  3. -4.533533E+00 1.799183E+00 
  4. -1.000000E-01 1.172576E+01 
 
 Zeros 
---------- 
Zeros on Omega-axis: 0 +-  20.00 29.67 39.17 
 
ELAPSED TIME=    5.99 SECONDS 
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Findings 
The resulting plots told the story according to the theory & practical application of the time.  The results 
suggested a good to excellent solution but we wanted better results.  Converting the transfer function, H(s), 
to the time domain, h(t), is were this project ended.  h(t) was achieved but had some problem finding the 
y.out(t) output signal peaks.  The following equations will define this problem in the time domain. 

Future 
Next, find a good math model for yout(t) using a series of Lorentzian curves as done in Application Problem 
1.1.1.  Calculate a Pattern-Induces-Bit (PIB) shift given a bit stream of zeroes and ones with some time 
spacing.  For example, a pattern of 3T-8T-3T-8T-3T etc. where T = 20.8 (ns) with a series of bits.  The bits 
alternate their polarity for each ‘1’ bit.  This will generate a sinusoidal wave.  Once satisfied that the PIB 
shifts are accurate, put this PIB shift program around the matched filter program above.  The new program 
should have a FIND statement to find the number of poles (i.e. ‘nXpole’ & ‘nPpairs’) necessary to minimize 
the PIB shift.  (After working some on the time domain approach, it seems that the zeroes do not need to be 
requested.  If they are necessary, ones input & output function, yin(t) & yout(t), will bring them into play.  See 
Equation 2.4 or Equation 2.5 for more on this.) 

Minimizing the PIB shift should be the overall design objective for a read-write channel for a disc drive.  If 
the PIB shift is to high, the data or bit pattern written will not be able to be retrieved. 

A project objective is very important to say the least.  Get your team to agree on one and keep it short; just a 
few words e.g. minimize this or maximize that.  Here is where Programming Calculus really shines.  If an 
objective changes over time, just change it in your model and rerun the problem.  Without Programming 
Calculus one may have been playing with a numerical method.  A change in objective could force one to 
practical start over; loosing months of time. 

 

Download: There is a freeware app available for making your own Matched Filters. 

 

*Note Error in Yin & Yout calculations when digital: 

The best way to determine Yin & Yout functions is to find their desired functions in the time-domain (if 
digital data, then approximate function with a good Curve fit routine) and then calculate their (analog) 
Fourier transforms. 

Yin is an 'isolated readback pulse' created with some type of disc drive head. Capture this signal digitally and 
then curve fit it using CurvFit with a series of Lorentzian pulses.  

Yout is a desired signal with some desired features; e.g. 'thin' pulse, no pre- nor post-undershoots, etc. A 
Lorentzian pulse is what we choose (I think).  
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Application Problem 2.2 

Inverse Problem: Optimum Matched Filter 
This above matched filter design is an algebraic problem but it also is an inverse problem where one knows 
what they want, just need to find a way to get there.  The following plot shows what we wanted, in time the 
domain, now we need to find the right h(t) to produce this signal. 

 
Figure 2.3  An "ideal" Readback Pulse for disc drives 

Here is the development of h(t).  After partial fraction expansion, H(s) from Equation 2.3 can be written as 
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 (For a causal system) the impulse response, h(t), of the transfer function, H(s), is the inverse LaPlace 
transform of H(s).  Thus, h(t) is stated as a sum of damped sine & cosine functions: 
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Equation 2.4  Impulse Response, h(t) 

This gives us yout(t) = yin(t) * h(t) where ‘*’ means convolvution operation and assume yin(t) as the 
‘readrit1.100’ data file from Equation 1.1  Lorentzian Series with npoints = 100.  Using discrete 
convolvution we obtain yout(t) as the following: 

k) - h(i  (k)y   (i)y
npoints

1k
inout 



  for i = 1 to npoints. 

Equation 2.5  Discrete output function 

Filter Summary 
Thus, h(t), requires a complex sinusoidal curve fitting procedure as shown in Application Problem 1.3.  
Things to note between h(t) & H(s) findings include: 

1. For h(t) only the number of Poles are required by user … no zeroes, the curve fitting procedure will 
determine if any zeroes are necessary. 

2. h(t) has no errors due to Fourier Transforms of yin(t) & yout(t); and, 
3. Only one Find statement … no nesting as required for finding H(s) zeroes. 

The frequency domain approach was used and the resulting pole-zero constellation put into an electrical 
circuit.  The summary was published and presented at a conference; see Arbitrary Equalization with Simple 
LC Structures in appendix.  We used a pole removal software program to determine the electrical circuit 
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components.  The order of pole removal was key to building the circuit.  There was more than one order of 
pole removal that worked, thus, more than one circuit to test.  Somewhere along the line, the frequency 
domain approach became undesirable.  The time domain approach we never got too (company went under!).  
On paper it does look the best. 
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Chapter 2 Exercises 
1. Lets determine which method is more accurate the Frequency or Time calculations? 

Frequency Calculations: 

a. Lets make sure we are comparing apples to apples, so Calculate the Fourier Transform of 
our yin(t) math model, see Equation 1.4 Modified Lorentzian Series for math model and 
parameters found in Application Problem 1.1. 

b. Make a new updated ‘readrit1.100’ file by copying it to a file named ‘readrit3.100’.  Next 
replace the frequency data values with correct values from your Fourier Transform 
calculated above.  Rerun Application Problem 2.1 using this new ‘readrit3.100’ file.  Save 
the output as ‘readrit3.*’ files. 

c. Calculate yout(t) by performing an inverse Fourier Transform on Yout(f) array. 

Time Calculations: 

d. Desired Objective? Finding i , i , &  i
 parameters in  
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 is alot simpler than solving them in Equation 2.3 as stated in Application Problem 2.1 if 
you have a good ‘error’ definition.  What would be your objective function (i.e. ‘error’ 
definition) in order to find the various poles & zeroes for h(t)? 

Hint: The desired output signal, yout(t) (see Figure 2.3), is defined in the time domain as a 
symmetric and slimmed pulse with minimum undershoots. 

e. Find pole ( i , i , &  i
) parameters in  
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f.  by writing code similar to the code used in Application Problem 1.3. 

Compare Results: 

g. Compare yout(t) from Frequency & Time calculations by calculating the difference between 
them in the time domain and plot the difference.  Is this difference plot sinusoidal in nature? 

h. Compare the pole locations by sight and using the Time pole locations as starting values for 
another run in Application Problem 2.1.  Does it converge to same old pole locations, stay 
right where the start, or what?  What does this say about the two methods; i.e. are they equal?  
If not, what may be the problem, e.g.truncation? 

2. If the desired output signal, yout(t) (see Figure 2.3), in the time domain is to be a symmetric and a 
slimmed pulse, what might the h(t) function shape be or equivalent to? 

3. How will the h(t) function in the convolvution yout(t) = yin(t) * h(t) guarantee symmetry? 

4. What yin(t) amplitudes will guarantee a slimmed yout(t) pulse? 

5. Curve fit h(t) in 
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to math model achieved in Application Problem 1.1 with V, Vc, PW50, & T0 parameters.  Find h(t) 

parameters Ci, i , i , &  i
  with P_Pairs = 4 for a good fit. 

6. If your objective function consists of matching ‘npoints’ to yout(t), and h(t) has ‘p_pairs’ of poles (& 
no P pole), how large must ‘npoints’ be in order to be classified as an over-determined system of 
equations? 

7. The Fourier Transform enters several errors into calculating yout(t) / yin(t).  The first error is due to 
computer truncating each value to n-digits; e.g. 10 digits per word or value.  They should be infinite 
in length (in theory).  What other errors do Fourier Transform enter into the calculations?  How 
might these errors be minimized? 
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3 Ordinary Differential Equations 

A Parameter Estimation for an Ordinary Differential Equations (ODEs) in an Initial Value Problem 
(IVP) or Boundary Value Problem (BVP) is solved using the Calculus-level ‘Find’ statement 
shown here: 

IVP: Find a   ooo   To Match Error 

BVP: Find a, ydot0, y2dot0   ooo   To Match Error 

Where ‘a’ is a vector with ‘n’ parts, a1, a2, a3,…an; 
ydot0, y2dot0,etc. are derivatives at independent variable = 0; and, 
‘error’ is the objective function. 

The ‘find’ statement is wrapped around an integrate and integration statements in order to solve the 
ODE while finding the best ‘a’ parameter(s) for the given problem. 

The ‘a’ parameter(s) are varied to fit one’s ‘m’ data points that make up the objective function, 
error.  This technique can vary as many parameters as you want; e.g. 5 or 50 or 50,000.  If there are 
less equations than parameters, m < n, this would be classified as an under-determined system of 
equations.  If there are more equations than parameters, m > n, this would be an over-determined 
system.  Under- or Over-determined systems might force one to switch solvers to do the job. 

The ‘integration’ statement sets up the integrate statement.  Its ‘equations’ phase shows the order of 
equation variables; i.e. y3d/y2d, y2d/y1d, etc is saying that ‘y3d’ = the derivative of ‘y2d’ and ‘y2d’ 
= the derivative of ‘y1d’, etc. 
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Application Problem 3.1 

Second Order Non-Linear ODE 
(Under- or Over-determined Systems) 

Problem Description 
An nth order non-linear ODE in an Curve fitting Problem may be solved as shown in this application. 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as many times 
as necessary in order to converge on a solution.  It varies your parameters (a, y0, & ydot0) as it calls your 
math model.  The ‘in’ phase tells the name of math model routine.  The ‘by’ phase tells what solver to use, 
Jove here.  And the ‘to’ phase tells what the objective function is; ‘minimize’ means all following variables 
must be as small as possible, error variable in this case. 

FIND a, y0, ydot0;      IN ODE-xCos;       BY JOVE;       TO MINIMIZE error 

 
  graphics screen   ! A second order ODE 
  global reals 
  problem ODE-xCos(6000, 3000, 3000) 
    dimension xp(100), yp(100), ydotp(100), 
y2dotp(100) 
    xp(1)=.5:  xp(2)=1:  xp(3)=1.5:  xp(4)=2 
    xp(5)= 2.5:   xp(6)= 3 
    yp(1)=.4390:  yp(2)=.5400:  yp(3)=.1060 
    yp(4)=-.8320: yp(5)=-2.0: yp(6)=-2.97 
    a= 1            ! initial values 
    x0=xp(1):  y0=1:  ydot0=1   ! initial conditions 
    points= 6:   npoints= points 
    print *, ' ' 
    print *, 'Starting search for parameters to minimize 
|error|' 
    print *, ' ' 
    FIND a,y0,ydot0; IN someODE; BY JOVE; & 
      TO MINIMIZE error 
C   plot y solution vs. x 
    x0= xp(1):   xfinal= 10 
    points=100:   npoints= points 
    deltaX=(xfinal-x0)/npoints 
    do 10 i= 1, npoints 
      xp(i)= x0 + (i-1)*deltaX 
10  continue 
    call someODE 

    @aplot('rr-AJAX') 
  end 
  model someODE 
    y= y0:   ydot= ydot0:  x= x0:  dx= .01 
    initiate ISIS;  for diffeqs; & 
      equations y2dot/ydot, ydot/y; & 
      of x;  step dx;  to xfinal 
    npoints= points:   error= 0 
    do 10 i= 1, npoints 
      xfinal= xp(i) 
      integrate diffeqs; by isis 
      error= error + (yp(i) - y)**2 
      if( npoints .eq. 100) then 
        yp(i)=y:  ydotp(i)=ydot:  y2dotp(i)= y2dot 
      end if 
10  continue 
    terminate diffeqs 
  end 
  model diffeqs 
    y2dot=2*ydot/x-(1+ a/x**2)*y  ! 2nd order non-
linear ODE 
  end 
  procedure aplot( plot77) 
 
ooo  ! (See ‘aplot’ code in appendix.) 
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Computer Plots 

 
Figure 3.1 Solution Plot for 2nd order differential equation 

Computer Output for JOVE Solver: 
 
Starting search for parameters to minimize |error| 
 
 
 JOVE STEP 5 OF ITERATION 1 
      OBJECTIVE= 2.910987E-02 PENALIZED OBJECTIVE= 2.910987E-02 
      AFTER 122 CUMULATIVE EVALUATIONS OF SOMEODE 
      INDEPENDENT VARIABLES 
       4.113128E-01   5.603355E-01   1.728102E-01 
 
 JOVE STEP 10 OF ITERATION 1 
      OBJECTIVE= 2.007301E-03 PENALIZED OBJECTIVE= 2.007301E-03 
      AFTER 235 CUMULATIVE EVALUATIONS OF SOMEODE 
      INDEPENDENT VARIABLES 
       1.759555E+00   4.657767E-01   5.927012E-01 
 
 
 
--- JOVE SUMMARY, INVOKED AT ODE[26] FOR MODEL SOMEODE ---- 
 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER ... [INITIAL] 1 
 UNKNOWNS 
   A 1.000000E+00 1.978276E+00 
   Y0 1.000000E+00 4.454773E-01 
   YDOT0 1.000000E+00 6.399512E-01 
 OBJECTIVE 
   ERROR 3.388487E+00 8.211294E-05 ! Excellent convergence 
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---END OF LOOP SUMMARY 
 
   x y y’ y’’ 
   0.50000 0.44548 0.63995 -1.4108 
   0.59500 0.49907 0.49577 -1.6214 
   0.69000 0.53797 0.33263 -1.8092 
   0.78500 0.56051 0.15288 -1.9704 
   0.88000 0.56524 -4.07979E-02 -2.1019 
   0.97500 0.55099 -0.24545 -2.2011 
    1.0700 0.51686 -0.45790 -2.2658 
 
  ooo 
 
    9.7150 -9.1746 1.7705 9.7313 
    9.8100 -8.9592 2.6938 9.6925 
    9.9050 -8.6564 3.6090 9.5597 
ELAPSED TIME=   18.73 SECONDS 

Findings 
Nice and quick convergence for parameter ‘a’. 
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Application Problem 3.2 

A Third Order Non-Linear ODE 

Problem Description 

The non-linear ordinary differential equation 

d3y/dx3= 3 * (dy/dx * d2y/dx2 + dy/dx **2 / x) / y 

was found knowing that the solution is a Lorentz function; i.e. worked backwards from solution to ODE.  The 
Lorentz function has small y values on its left & right side that make it a stiff ODE to solve numerically.  In 
order to help get pass this stiffness problem the integration was limited from -50 to +50 thus truncating its 
side tails or ramps (see Lorentz figure below). 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as many times 
as necessary in order to converge on a solution.  It varies your parameters, in this case y0, ydot0, & y2dot0, 
as it calls your math model.  The ‘in’ phase tells the name of math model routine.  The ‘by’ phase tells what 
solver to use, ajax here.  And the ‘to’ phase tells what the objective function is; ‘match’ means all following 
variables must equal zero, error variable in this case. 

FIND alpha;      IN Lorentz;       BY AJAX;       TO MATCH error 
 
  graphics screen   ! A 3rd order ODE 
  global reals 
  problem Lorentz(6000, 3000, 3000) 
    real xp(100),yp(100),ydotp(100), y2dotp(100), 
y3dotp(100) 
    points= 1:  npoints= points:  xp(1)= 0:  yp(1)= 1 
    y3dot= 1e-5   ! initial values 
    x0= -50:  y0= .03:  ydot0= .001:  y2dot0= 7e-5  ! 
initial conditions 
    print *, ' ' 
    print *, 'Starting search for parameters to minimize 
|error|' 
    print *, ' ' 
 
    FIND y0,ydot0,y2dot0; IN someODE; & BY AJAX( 

cntl); TO MATCH error 
C   plot y solution vs. x 
    points= 100:    npoints= points:   deltaX= (50 - 
x0)/npoints 
    do 10 i= 1, npoints 
      xp(i)= x0 + (i-1)*deltaX 
10  continue 
    call someODE 
    @aplot('rr-AJAX') 
  end 
  model someODE 
    npoints= points  ! initial conditions 
    print *, 'npoints =', npoints 
    y=y0:  ydot=ydot0:  y2dot= y2dot0:  x= x0:  dx= 
.002 

    initiate ISIS;  for diffeqs; & 
      equations y3dot/y2dot, & y2dot/ydot, ydot/y; & 
      of x;  step dx;  to xfinal 
    error= 0 
    do 10 i= 1, npoints 
      xfinal= xp(i) 
      integrate diffeqs;  by ISIS 
      error= error + (yp(i) - y)**2   !/ (.001+y**2) 
      if( npoints .eq. 100) then 
        yp(i)= y:   ydotp(i)= ydot:   y2dotp(i)= y2dot 
        y3dotp(i)= y3dot 
      end if 
10  continue 
  end 
  model diffeqs 
    if( x .le. 1e-13 .and. x .ge. 0) then 
      y3dot= 3 * (ydot * y2dot + ydot**2 / 1e-13) / y 
    elseif(x.ge.-1e-13 .and. x.le.0) then 
      y3dot=-3*(ydot*y2dot+ydot**2 / 1e-13) / y 
    else 
      y3dot=3*(ydot*y2dot+ydot**2 / x) / y 
    end if 
  end 
  controller cntl( Ajax) 
    converge=2: zero=1e-13: remax =30 
  end 
  procedure aplot( plot77) 
 
   ooo  ! (See ‘aplot’ code in appendix.) 
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Computer Plots 

 
Figure 3.2 Solution to Lorentz ODE 

Computer Output for AJAX Solver: 
Starting search for parameters to minimize |error| 
 
--- AJAX SUMMARY, INVOKED AT LORENTZ[20] FOR MODEL SOMEODE ---- 
 
 
   CONVERGENCE CONDITION AFTER 23 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   Y0 3.000000E-02 3.000000E-02 3.000000E-02 
   YDOT0 1.000000E-03 9.999979E-04 9.999959E-04 
   Y2DOT0 7.000000E-05 6.936494E-05 6.874562E-05 
 OBJECTIVE 
   ||G|| @MIN ||X||    1.403871E+00 5.153686E-01 1.767260E-01 
 
  ooo 
 
 LOOP NUMBER ... [INITIAL] 23 
 UNKNOWNS 
   Y0 3.000000E-02 3.000001E-02 
   YDOT0 1.000000E-03 9.999914E-04 
   Y2DOT0 7.000000E-05 6.725475E-05 
 OBJECTIVE 
   ||G|| @MIN ||X||    1.403871E+00 7.576720E-14 ! slow convergence 
 
 
---END OF LOOP SUMMARY 
 
   x y y’ y’’ 
   -50.000 3.00000E-02 9.99991E-04 6.72547E-05 
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   -49.000 3.10345E-02 1.06969E-03 7.22181E-05 
   -48.000 3.21412E-02 1.14461E-03 7.76945E-05 
   -47.000 3.33257E-02 1.22528E-03 8.37460E-05 
   -46.000 3.45940E-02 1.31232E-03 9.04432E-05 
 
  ooo 
 
    47.000 3.03687E-02     -1.39562E-03 7.69468E-05 
    48.000 2.90105E-02     -1.32183E-03 7.07426E-05 
    49.000 2.77232E-02     -1.25395E-03 6.51134E-05 
ELAPSED TIME=  133.14 SECONDS 

Findings 
Limiting x-axis got past the stiff ODE problem but convergence was slow. Objective dropped by a factor of 
10-14. Nice!  The x-axis limit of +/- 50 avoided this stiff problem.  Extend the limits to +/- 200 or more and 
you’ll have a stiff ODE problem again.  More digits may remove your stiff problem for a time but given time 
and you’ll need more digits again.  We are always pushing the envelope! 
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Application Problem 3-3 

A Bang-Bang Control Problem 

Problem Description 

Bang-Bang Control is used in this Voice Coil Motor[3]actuator system Design.  A Voice Coil Motor (VCM) 
is basically an electromagnetic transducer in which a coil placed in a magnetic pole gap experiences a force 
proportional to the current passing through the coil.  VCM can be generally classified as a dc brushless motor 
if the coil is wound as the starter and the permanent magnet with the attached payload is allowed to move or 
rotate.  For rotary applications, a number of types of limited travel & brushless motors are available on the 
market, possessing flat torque output over a region of  20.  By providing the necessary encoding and 
electronics, these motors are also used as constant speed motors. 

Assuming the force generated is independent of position, the governing equation can be written as 

   L 
di
dt + R i = E -  v 

dv
dt  =  i / J 

v = dx / dt 

where 
L inductance of the motor coil (henry); 
i current intensity through the motor coil (ampere); 
R resistance of the motor coil (ohm); 
E applied voltage to the coil (volt); 
 transducer constant; for linear motion, its units are either Newton/ampere or volt/meter/second, and 

for rotary motion, the units are N-m/A or volt/radians/second; 
v velocity of motion (radians/second or meter/second); 

J total inertia of the motor and access mechanism (kg - m2 or kg); 
x response (radians or meter). 

The VCM design objective is to move from point A to B in the shortest time possible. 

A physical constraint may exist to limit R / **2 to a constant  a tolerance.  H1 & H2 in attached code 
show how such a constraint may be handled.  R and  will be varied in order to find a minimal seek time, 
Total_t, while meeting this physical constraint. 

A dc brushless motor is to be used whose coil has an inductance of .015 H in the presence of the permanent 
magnet.  The supply voltage is 24 V, and there is a drop of about 1 V in the electronics before the motor 
winding.  To reduce the thermal gradient, the maximum current should be limited to 0.5 A.  Obtain the 
voltage transition times (Taui ), plus the torque sensitivity () of the dc motor and the resistance (R) of the 

coil to meet the design objectives. 

                                                 
3 Ananthanarayanan, K. S., Third-Order Theory and Bang-Bang Control of Voice Coil Actuators, IEEE Trans. on 
Magnetics, Vol. MAG-18, No. 3, May 1982, pp. 888-892. 
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Computer Code 
1. Theoretical Problem/Solution ... Zero time for change in polarity 
 
global all 
Problem Seektime    ! Voice Coil Motor For An Actuator 
! Objective = Move from Point A to B in desired time (Tf) 
  call setup 
  Call Actuator 
End 
procedure setup 
  dimension xTau(3) 
  Tf= .072    ! Time In Seconds 
  R= 10:  Emax= 23:  aL= .015    ! Ohms, Volts, Henry 
  Phi= .4:  aJ= 5e-4    ! Volts * Sec./Rad. & Kg * M * M * 
Ohm 
  xTau(1)= .3*Tf:  xTau(2)=.4*Tf:  xTau(3)= .3*Tf 
  Tmech= .12:  Tm8tol= .05  ! Mechanical Time constant 
& % tolerance 
  Pi= 4*Atan(1.):  xFinal= Pi / 6     ! (180/6) 30 degrees of 
travel 
End 
Model Actuator 
  H1=(Tmech*(1+Tm8tol))-R*aJ/Phi**2  ! H1,H2 & H3 
must be >= 0 
  H2=R*aJ/Phi**2-Tmech*(1-Tm8tol) 
H3=.5-C     ! upper limit for Current 
 

  Find xTau; In Bangbang; By Ajax( Cntl1); & 
To Match errpos    !, errvel 
 

  Print *, "Solution: " 
  Print *, xTau(1), xTau(2), xTau(3) 
End 

Controller Cntl1( Ajax) 
  damp = .0002 
End 
Model Bangbang 
  Tp=0:  T= 0:  C= 0:  V= 0:  X= 0     ! Initial Values 
  do 10 I= 1, 3 
    Total8t= Tp + abs( xTau( i)) 
    Dt= xTau( i)/50:  Dp= 10 * Dt:  Tp= Tp + Dp 
    Initiate Isis;   For VCMotor; & 
       Equations Cdot/C, Vdot/V, Xdot/X;  of T;  Step 
Dt;  To Tp 
    Polarity= -(-1)**I:  E= Emax * Polarity 
    Do While (Tp .lt. Total8t) then 
      Tp= Tp + Dp 
      Integrate VCMotor;   By Isis 
      Print 79, T, V, Vdot  ,C,CDOT,X,XDOT 
    End Do 
10 continue 
  errpos= (xFinal - X)**2:  errvel= V**2 
  Print *, " " 
  Print 79, T, H1, H2, H3 
79 format( 1x, f7.5, 1x, 6(1pg13.5, 1x)) 
End 
Model VCMotor 
C C=Current=i 
  Xdot= V 
  Vdot= Phi * C / aJ 
  Cdot= (E - Phi * V - R * C) / aL 
End 

2. Theoretical Problem/Solution ... Zero time for change in polarity 
New objective: Minimize Seek Time 
 

global all 
Problem Seektime(200000,25000, 25000) ! Voice Coil 
Motor For An Actuator 
! Objective = Minimize Seek Time 
  call setup 
  Find Phi, R;   In Actuator;  By Jupiter( Cntl2); 
~   Holding H1, H2, H3;  To Minimize tTotal 
End 
procedure setup 
  dimension xTau(3) 
  Tf= .072    ! Time In Seconds 
  R= 10:   Emax= 23:  aL= .015    ! Ohms, Volts, Henry 
  Phi= .4:  aJ= 5e-4    ! Volts * Sec./Rad. & Kg * M * 
M * Ohm 
  xTau(1)= .3*Tf:  xTau(2)=.4*Tf:  xTau(3)= .3*Tf 
  Tmech= .12:  Tm8tol= .05  ! Mechanical Time 
constant & % tolerance 

  Pi= 4*Atan(1.):  xFinal= Pi / 6     ! (180/6) 30 degrees 
of travel 
End 
Model Actuator 
  H1=(Tmech*(1+Tm8tol))-R*aJ/Phi**2  ! H1,H2 & 
H3 must be >= 0 
  H2=R*aJ/Phi**2-Tmech*(1-Tm8tol) 
  H3=.5-C     ! upper limit for Current 
  Find xTau;  In Bangbang;  By Ajax( Cntl1); 
~   To Match errpos    !, errvel 
End 
Controller Cntl1( Ajax) 
  damp = .0002 !:    summary=0 
End 
Controller Cntl2( Jupiter) 
  maxeval= 4000000 
End 
   ooo same as previous example 
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3. Practical Problem/Solution ... ArcTan() used to change polarity 
 
Problem Seektime ! Voice Coil Motor For An 
Actuator 
   ! Objective = Minimize Seek Time with constraint on 
   ! rise/fall times; ie. |Edot| < Emax_slope] 
 
  ooo   (same code as in previous example) 
 
  Pi = 4*Atan(1.):  Xfinal = Pi / 6:  !radians = 30 degrees 
of travel 
  Ypeak = .985 * Pi/2:  Xmax = Tan( Ypeak) 
  Trise = 5*Tf/100:  Pw50 = Trise:  Tends = .6*Trise 
  Find Phi, R;  In Actuator;  By Jupiter( Cntl1)  & 
    Holding H1, H2, Hc:  To Minimize Total_t 
End 
 
  ooo   (same code as in previous example) 
 
Model VCMotor 
  Vdot = Phi * C / J:  Xdot = V 
  Call Risetime ! E = constant except during transition 
times 
  Cdot = (E - Phi * V - R * C) / L:  Hc = .5 - C ! Hc 
must be >= 0 
End 

Model Risetime 
  If( I .Eq. 1) then ! Calculate E during transition time 
    If( T .lt. Tends ) then ! ie. E = f(t) during rise/fall 
times 
      E = (Atan((4*T/Pw50 - 1.)*Xmax) / Ypeak + 1.)/2. 
    Endif 
  Else If( I .eq. 2) then 
    If( T-Xtau(1) .lt. Trise) then !Switch voltage 
polarity 
      Tt = T - Xtau(1) 
      E = - Atan((2*Tt/Pw50 - 1.)*Xmax) / Ypeak 
    Endif 
  Else If( I .eq. 3) then 
    If( T-Xtau(1)-Xtau(2) .lt. Trise) then ! Switch 
voltage polarity 
      Tt = T-Xtau(1)-Xtau(2) 
      E = Atan((2*Tt/Pw50 - 1.)*Xmax) / Ypeak 
  Else If( Time-T .lt. Tends) then ! Drop voltage to 
zero 
    Tt = T-Time+Tends 
    E = - (Atan((4*Tt/Pw50 - 1.)*Xmax) / Ypeak-1.)/2 
  Endif 
End 
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Computer Output for AJAX Solver: 
1. Theoretical Problem/Solution ... Zero time for change in polarity 

T V Vdot C CDOT X XDOT 
0.00926 13.056 1492.4 1.8655 -58.504 5.44372E-02 13.056 
0.01389 19.469 1281.5 1.6019 -53.756 0.13010 19.469 
0.01852 24.963 1096.6 1.3708 -46.187 0.23328 24.963 
0.02315 29.664 938.19 1.1727 -39.525 0.36002 29.664 
0.03392 7.8787 -2199.0 -2.7488 89.092 0.57893 7.8787 
0.03930 -2.9663 -1837.9 -2.2973 77.311 0.59128 -2.9663 
0.04469 -12.017 -1532.9 -1.9162 64.579 0.55021 -12.017 
0.05007 -19.566 -1278.5 -1.5982 53.864 0.46456 -19.566 
0.05882 -4.8919 2086.9 2.6086 -75.313 0.34306 -4.8919 
0.06320 3.6420 1814.2 2.2678 -75.643 0.34076 3.6420 
0.06757 11.026 1566.3 1.9579 -65.939 0.37325 11.026 
0.07195 17.398 1351.6 1.6895 -56.939 0.43578 17.398 
0.07633 22.897 1166.3 1.4578 -49.134 0.52423 22.897 
 
0.07633 -62.374 62.386 -0.95783 
 
 
 
---- AJAX SUMMARY, INVOKED AT ACTUATOR[28] FOR MODEL BANGBANG ---- 
 
 
    CONVERGENCE CONDITION AFTER 12 ITERATIONS 
       UNKNOWNS NOT CONVERGED 
       CONSTRAINTS SATISFIED 
       ALL SPECIFIED CRITERIA SATISFIED 
 
 
 
 
  LOOP NUMBER ... [INITIAL] 1 2 
  UNKNOWNS 
    XTAU(1) 2.160000E-02 2.391058E-02 2.269326E-02 
    XTAU(2) 2.880000E-02 2.653013E-02 2.725812E-02 
    XTAU(3) 2.160000E-02 2.214367E-02 2.178550E-02 
  OBJECTIVE 
    ||G|| @MIN ||X|| 2.439001E-01  5.005191E-02 1.591911E-02 
 
   ooo 
 
  LOOP NUMBER ... [INITIAL] 11 12 
  UNKNOWNS 
    XTAU(1) 2.160000E-02 2.315396E-02 2.314758E-02 
    XTAU(2) 2.880000E-02 2.691873E-02 2.692375E-02 
    XTAU(3) 2.160000E-02 2.188192E-02 2.187862E-02 
  OBJECTIVE 
    ||G|| @MIN ||X|| 2.439001E-01 1.616726E-06 4.042006E-07 
 
 
 ---END OF LOOP SUMMARY 
 
 
 Solution: 
 0.02314757710280506   0.02692374777334727   0.021878623739922533 
 ELAPSED TIME =    0.88 SECONDS 
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2. Theoretical Problem/Solution ... Zero time for change in polarity 
New objective: Minimize Seek Time 

 
 
--- AJAX SUMMARY, INVOKED AT ACTUATOR[28] FOR MODEL BANGBANG ---- 
 
 
   CONVERGENCE CONDITION AFTER 14 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   XTAU(1) 2.160000E-02 2.391058E-02 2.460828E-02 
   XTAU(2) 2.880000E-02 2.653013E-02 2.584422E-02 
   XTAU(3) 2.160000E-02 2.214367E-02 2.246816E-02 
 OBJECTIVE 
   ||G|| @MIN ||X|| 2.439001E-01 2.676381E-02 1.676711E-03 
 
   ooo 
 
 LOOP NUMBER ... [INITIAL] 13 14 
 UNKNOWNS 
   XTAU(1) 2.160000E-02 2.415900E-02 2.414942E-02 
   XTAU(2) 2.880000E-02 2.617551E-02 2.618261E-02 
   XTAU(3) 2.160000E-02 2.230714E-02 2.230376E-02 
 OBJECTIVE 
   ||G|| @MIN ||X| 2.439001E-01 2.807086E-06 7.017860E-07 
 
 
---END OF LOOP SUMMARY 
 
   ooo 
 
--- AJAX SUMMARY, INVOKED AT ACTUATOR[28] FOR MODEL BANGBANG ---- 
 
 
   CONVERGENCE CONDITION AFTER 12 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   XTAU(1) 1.521291E-02 1.542049E-02 1.542090E-02 
   XTAU(2) 3.567217E-02 3.548515E-02 3.548479E-02 
   XTAU(3) 1.377865E-02 1.373695E-02 1.373687E-02 
 OBJECTIVE 
   ||G|| @MIN ||X|| 1.836747E-03 4.606212E-04 4.588237E-04 
 
   ooo 
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LOOP NUMBER ... [INITIAL] 11 12 
 UNKNOWNS 
   XTAU(1) 1.521291E-02 1.560927E-02 1.560927E-02 
   XTAU(2) 3.567217E-02 3.531630E-02 3.531630E-02 
   XTAU(3) 1.377865E-02 1.369971E-02 1.369971E-02 
 OBJECTIVE 
   ||G|| @MIN ||X|| 1.836747E-03 4.541167E-06 4.540613E-06 
 
 
---END OF LOOP SUMMARY 
 

3. Practical Problem/Solution ... Lorentz function used to minimize Jerk 
 
 
--- AJAX SUMMARY, INVOKED AT ACTUATOR[33] FOR MODEL BANGBANG ----  
 
 
   CONVERGENCE CONDITION AFTER 20 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS UNSATISFIED 
      MAXIMUM ITERATIONS PERFORMED 
      SPECIFIED CRITERIA UNSATISFIED 
 
 
 LOOP NUMBER .........   [INITIAL]         1              2 
 UNKNOWNS 
   XTAU    (     1)    2.160000E-02  2.350391E-02  2.396152E-02 
   XTAU    (     2)    2.880000E-02  2.153747E-02  1.997667E-02 
   XTAU    (     3)    2.160000E-02  2.751439E-02  2.804971E-02 
 
 OBJECTIVE 
   ||G|| @MIN ||X||    2.171108E+02  2.169100E+01  1.439846E+01 
 
ooo 
 
 LOOP NUMBER .........   [INITIAL]        19             20 
 UNKNOWNS 
   XTAU    (     1)    2.160000E-02  2.485609E-02  2.485575E-02 
   XTAU    (     2)    2.880000E-02  1.510293E-02  1.509968E-02 
   XTAU    (     3)    2.160000E-02  2.901244E-02  2.901266E-02 
 OBJECTIVE 
   ||G|| @MIN ||X||    2.171108E+02  3.521112E-02  3.520294E-02 
 
 
---END OF LOOP SUMMARY 
 
 
 
--- AJAX SUMMARY, INVOKED AT ACTUATOR[33] FOR MODEL BANGBANG ----       
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   CONVERGENCE CONDITION AFTER 20 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS UNSATISFIED 
      MAXIMUM ITERATIONS PERFORMED 
      SPECIFIED CRITERIA UNSATISFIED 
 
 
 LOOP NUMBER .........   [INITIAL]         1              2 
 UNKNOWNS 
   XTAU    (     1)    2.485575E-02  2.163943E-02  2.128472E-02 
   XTAU    (     2)    1.509968E-02  2.543858E-02  2.664468E-02 
   XTAU    (     3)    2.901266E-02  1.611228E-02  1.347697E-02 
 OBJECTIVE 
   ||G|| @MIN ||X||    9.500061E+02  1.120377E+02  1.114299E+01 
 
ooo 
 
--- AJAX SUMMARY, INVOKED AT ACTUATOR[33] FOR MODEL BANGBANG ----       
 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER .........   [INITIAL]         1 
 UNKNOWNS 
   XTAU    (     1)    2.109537E-02  2.109537E-02 
   XTAU    (     2)    1.363358E-02  1.363358E-02 
   XTAU    (     3)    3.235079E-03  3.235079E-03 
 OBJECTIVE 
   ||G|| @MIN ||X||    2.318342E-03  1.540415E+00 
 
 
---END OF LOOP SUMMARY 
 
 
 
--- JUPITER SUMMARY, INVOKED AT SEEKTIME[4] FOR MODEL ACTUATOR ---     
 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
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 LOOP NUMBER .........   [INITIAL]         1 
 UNKNOWNS 
   PHI                 4.000000E-01  4.137417E-01 
   R                   1.000000E+01  9.999781E+00 
   TRISE               0.000000E+00  0.000000E+00 
   PW50                3.600000E-03 -8.430538E-03 
   TENDS               0.000000E+00  0.000000E+00 
 OBJECTIVE 
   TTOTAL              6.896810E-02  3.796403E-02 
 INEQUALITY CONSTRAINTS 
   H1                  9.475000E-02  9.679199E-02 
   H3                  5.000000E-01  2.178381E+00 
 
 
---END OF LOOP SUMMARY 
ELAPSED TIME =  266.45 SECONDS 

Findings 
Fair rate of convergence.  Solvers seemed to favor negative values for parameters being solved.  This forced 
more ‘holding’ parameters to be added to problem; e.g. H1 & H3.  PW50 parameter is negative but gets 
squared in model so doesn’t matter.  A positive value will hold same weight in model. 

The main objective for this example was to show nesting of solvers.  The 1st example showed just the most 
inner solver solving a boundary value problem (BVP).  The 2nd example varied two parameters in the BVP, 
R & Phi, using the Jupiter solver.  Jupiter required a huge number for its control parameter ‘maxEval’, i.e. 4 
million!  That will allow Jupiter to execute the inner BVP up to 4 million times.  Normally 5 thousand 
executions will be enough, why so many here? 

The 3rd example is the same as the 2nd example with 3 more parameters being varied.  It took time to find the 
right solver, Jupiter in this case, and what constraints to add in order to help guide solver to a useful solution. 

 
 

Applied Voltage waveforms to Coil 

 
Figure 3.3  Theoretical Problem/Solution ... Zero time for change in polarity 

Objective: Specific time (Tf) for movement; i.e. Total_t must equal Tf. 
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Figure 3.4  Theoretical Problem/Solution ... Zero time for change in polarity 

Objective: Minimize Seek Time (Total_t) 
 

 
Figure 3.5  Practical Problem/Solution ... Lorentz function used to minimize Jerk 

Objective:  Minimize Seek Time while constrainting rise/fall time. 

Findings 
At switch points where ‘E’ changes polarity, no derivative exists and this must be causing the 
solvers problems.  On a simple test without nesting, the problems did converge to a reasonable 
solution but took a revelatively long time getting to it. 
 
When nesting, trying to shorten Tau1 and Tau2, the solvers seem to have gotten lost on their search.  
I assume it’s the lack of derivatives that is the problem, but maybe I’m the problem for missing 
something! 
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Application Problem 3-4 

Non-Linear Equations of Motion 

Problem Description 

"Why should one be interested in nonlinear differential equations?  The basic reason is that many physical 
systems - and the equations that describes them - are simply nonlinear from the outset.  The usual 
linearization approximating devices that are partly confessions of defeat in the face of the original nonlinear 
problems and partly expressions of the practical view that half a loaf is better than none.  It should be added at 
once that there are many physical situations in which a linear approximation is valuable and adequate for most 

purposes.  This does not alter the fact that in many other situations linearization is unjustified* ." [4] 

A nonlinear problem that is the equation of motion for an undamped pendulum of length A whose bob has a 
mass M is 

d2x
dt2  + 

g
A sin x = 0 (1) 

and if there is present a damping force proportional to the velocity of the bob, then the equation becomes 

d2x
dt2  + 

c
M 

dx
dt  + 

g
A sin x = 0 (2) 

In the usual linearization we replace sin x by x, which is reasonable for small oscillations but amounts to a 
gross distortion when x is large. 

The following is just a rough sketch of necessary code to solve such a problem 

Computer Code 
This is an example of an Initial Value Problem (IVP) .  The code integrates from the initial value until the 
final condition is met. 
 
Problem motion 
  C=… m=… g=… a=…  x0=… xfinal=… dx=(xfinal-xo)/100 
  initiate ISIS;  for diffeqs; & 
    equations x2dot/xdot, xdot/x;   of t;  step dt;  to tfinal 
  npoints= 100 
  do 10 i= 1, npoints 
    tfinal= dt * i 
    integrate diffeqs; by isis 
    print *, tfinal, x 
10 continue 
  end 
  model diffeqs 
    x2dot= -c/m*xdot-g/a*sin(x)  ! 2nd order non-linear ODE 
  end 

                                                 
*  "It has even been suggested by Einstein that since the basic equations of physics are nonlinear, all of the mathematical 
physics will have to be done over again." 
4 Simmons, G.F., Differential Equations with Applications and Historical Notes, McGraw-Hill, p.291, 1972. 
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Chapter 3 Exercises 

1. Pendulum Problem (continued) 

For the following problems assume a pendulum length A = 1 m, bob mass m = 1000 g, and gravitational 

acceleration g = 9.8 m/s2. 

Assume ‘n’ boundary value points for x1, x2, ... xn and change the above IVP code to a BVP code that 

could solve for a ‘c’ value. 

2. Harmonic Oscillator 

The Schrödinger wave equation for a classical harmonic oscillator [5] is 

d2
dx2  + 

82 m
h2  (E - 22 m v2 x2)  = 0 

where m = mass 
 v = vibration frequency 

 h = Planck's constant = 6.6x10-34 J·s 
 x = position (i.e., independent variable) 
 E = Total energy 
 (x) = Schrödinger wave function 

What value of vibration frequency, v, is sufficient to satisfy the boundary conditions 
(0) = ??, (2) = ?? and (5) = ?? given values for parameters m and E? 

3. Nuclear Reaction[6] 

Neutrons are created (by a nuclear reaction) inside a hollow sphere of radius R.  The newly created 
neutrons are uniformly distributed over the spherical volume.  Assuming that all directions are equally 

probable (isotropy), what is the average distance ( r
-
 ) a neutron will travel before striking the sphere's 

surface?  Assume straight line motion, no collisions and following math model 




ddkkkRr   
1

0 0

222 sinsin1
2

3
 

4. Boundary Layer Matching Example: 

Find  for the following differential equation [7] 

    y" + (1 + x) y' + y = 0 
where y(0) = y(1) = 1 
subject to the constraint  0    1 

                                                 
5 Simmons, G.F., Differential Equations with Applications and Historical Notes, McGraw - Hill, p. 194, 1972. 
6 Arfken, G., Mathematical Methods for Physicists, Academic Press, p. 205, 1968. 
7 Bender, C.M. and Orszag, S.A., Advanced Mathematical  Methods for Scientists and Engineers, McGraw-Hill, 
1978. 
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5. Heat Transfer 

Heat transfer through a laminar boundary layer was modeled by Lighthill [8] as an implicit nonlinear 
Volterra integral equation as shown here: 

 
 




z

du
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For .1  z  ???, plot F(z) over this range 

6. Painleve transcendent ODE 

Given the ( first Painleve transcendent [9]) ODE defined as 

ty
dt

yd
 2

2

2

6  

with boundary conditions of y(0)=-.678, y(.5)=-1.012,& y(1)=.0313.  Solve for y and plot y vs. t over the 
range 0  t  1.5.

                                                 
8 Lighthill, M.J., Contributions to the theory of Heat Transfer through a Laminar Boundary Layer, Proc. Roy. 
Soc. 202A, pp. 359-377, 1950. 
9 Chang, Y.F., The ATOMCC Toolbox, Byte Magazine, pp. 215-224, April 1986. 
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4 System of Differential Equations 

A Parameter Estimation for a system of Ordinary Differential Equations (ODEs) in an Initial Value 
Problem (IVP) or Boundary Value Problem (BVP) is solved using the Calculus-level ‘Find’ 
statement shown here: 

IVP: Find a   ooo   To Match Error 

BVP: Find a, ydot0, y2dot0   ooo   To Match Error 

Where ‘a’ may be a vector with ‘n’ parts, a1, a2, a3,…an; 
ydot0, y2dot0,etc. are derivatives at independent variable = 0; and, 
‘error’ is the objective function. 

The ‘find’ statement is wrapped around an integrate and integration statement in order to solve the 
ODE while finding the best ‘a’ parameter(s) for the given problem. 

The ‘a’ parameter(s) are varied to fit one’s ‘m’ data points that make up the objective function, 
error.  This technique can vary as many parameters as you want; e.g. 5 or 50 or 50,000.  If there are 
less equations than parameters m < n, this would be classified as an under-determined system of 
equations.  If there are more equations than parameters, m > n, this would be an over-determined 
system.  Under- or Over-determined systems might force one to switch solvers to do the job. 
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Application Problem 4.1 

The Lorentz Equations, a System of ODEs 

Problem Description 
Lorentz system of differential equations is found in many fields, e.g. electro-magnetics, 
hydrodynamics, & mechanical systems.  Here we will find the parameter ‘σ’ that best curve fits the 
given data in order to show parameter estimation for systems of ordinary differential equations 
(ODEs). 

Lorentz wrote his non-linear equations in the form: 

dx/dt= σ(y − x) 

dy/dt= rx − y − xz 

dz/dt= xy − bz 

t is the dimensionless time. 

where σ, r and b are real, positive parameters.  Initial values were the following: 
σ= 1, r= 36, b= 1 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
σ, as it calls your math model.  The ‘in’ phase tells the name of math model routine.  The ‘by’ phase 
tells what solver to use, hera here.  And the ‘to’ phase tells what the objective function is; 
‘minimize’ means converge objective function to a minimum value, ‘error’ variable in this case. 

FIND alpha;      IN Lorentz;       BY HERA;       TO MINIMIZE error 
 
  graphics screen   ! Lorentz system of ODES, 1900(?) 
  problem ODEsys(6000, 3000, 3000) 
    common /vars/ alpha, r, b, t, x0, y0, z0, error, 
npoints, & 
      tp(100), xp(100), yp(100), zp(100) 
    common /eqs/ dxdt,dydt,dzdt,x,y,z 
    tp(1)= .04:   tp(2)= 1.28:   tp(3)= 3.28 
    xp(1)= 15.941:   yp(1)= 5.9966:    zp(1)= 57.498 
    xp(2)= 13.770:   yp(2)= 16.314:    zp(2)= 37.115 
    xp(3)= -0.6357:  yp(3)= -1.0121:   zp(3)= 18.994 
    alpha= 11:   r= 36:    b= 1   ! initial values 
    x0= 19:  y0= 20:  z0= 50      ! initial conditions 
    npoints= 3 
    print *, ' ' 
    print *, 'Starting search for parameters to minimize 
|error|' 
    print *, ' ' 
    Find alpha; in lorentz; by HERA; to minimize error 
C   plot x,y,z solution vs. time 
    npoints= 100 
    do 10 i= 1, npoints 
      tp(i)= i / 25. 
   10   continue 
    call lorentz 
    @aplot('rr-AJAX') 
  end 

  model lorentz 
    common /vars/ alpha, r, b, t, x0, y0, z0, error, 
npoints, & 
      tp(100), xp(100), yp(100), zp(100) 
    common /eqs/ dxdt,dydt,dzdt,x,y,z 
    x=x0: y=y0: z=z0: t=0:  dt= .01 
    initiate ISIS; for diffeqs; & 
      equations dxdt/x, dydt/y,  dzdt/z; & 
      of t;  step dt;  to tfinal 
    error= 0 
    do 10 i= 1, npoints 
      tfinal= tp(i) 
      integrate diffeqs; by isis 
      error= error + (xp(i) - x)**2 + (yp(i)-y)**2 + 
(zp(i)-z)**2 
      if( npoints .eq. 100) then 
        xp(i)=x:  yp(i)=y:  zp(i)= z 
      end if 
   10   continue 
    terminate diffeqs 
  end 
  model diffeqs 
    common /vars/ alpha, r, b, t, x0, y0, z0, error, 
npoints 
    common /eqs/ dxdt,dydt,dzdt,x,y,z 
    dxdt= alpha * (y - x) 
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    dydt= (r-z) * x - y 
    dzdt= x * y - b * z 
  end 

  procedure aplot( plot77) 
 
  o o o     basically the same as appended ‘aplot’ routine 

 

Computer Plots 

 
Figure 4.1 Solution to Lorentz Equations 

Computer Output for HERA Solver: 
 
Starting search for parameters to minimize |error| 
 
---- HERA SUMMARY, INVOKED AT ODESYS[28] FOR MODEL LORENTZ ---- 
 
   CONVERGENCE CONDITION AFTER  6 ITERATIONS 
      UNKNOWNS CONVERGED 
      OBJECTIVE CRITERION UNSATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   ALPHA 1.100000E+01 1.650000E+01 1.509860E+01 
 OBJECTIVE 
   ERROR 6.883523E+02 6.725837E+00 1.028192E+01 
 
o o o 
 
 LOOP NUMBER ... [INITIAL] 5 6 
 UNKNOWNS 
   ALPHA 1.100000E+01 1.576978E+01 1.577000E+01 
 OBJECTIVE 
   ERROR 6.883523E+02 8.826836E-07 6.944056E-08 
 
 
---END OF LOOP SUMMARY 

Findings 
Excellent rate of convergence!  Alpha parameter value is very reasonable.  This example’s results 
suggest a good math model. 

While Lorentz studied this system of ODEs, he probably needed a math model to simulate the 
solutions to his ODEs.  Just like a pulse train simulated at Memorex in the 1980s.  The Lorentz 

function is defined as y= 
1

1+x2.  This allows for an excellent math model of an isolated pulse for the 
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disc drive industry.  Memorex put many isolated pulse models together with the models separated 
by some offset times to simulate a pulse train that is similar to the z(t) plot in above plot. 
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Application Problem 4.2 

The Convection Reaction Equations, a System of PDEs 
(An Initial Value Problem) 

Problem Description 

The equations are in the form: 
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where initial values of parameters were assumed to be the following: 
P1 = 1.23, P2= 9.87, & K= .3 

Boundary conditions for 0 ≤ x ≤ 100 are: )15/)10(exp( 2
1  xU , 

U2(x,0) = U1(100-x,0)  &  U3(x, 0) = 1 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
Ua & aK, as it calls your math model.  The ‘in’ phase tells the name of math model routine.  The 
‘by’ phase tells what solver to use, Jupiter here.  And the ‘to’ phase tells what the objective function 
is; ‘minimize’ means converge objective function to a minimum value, ‘error’ array in this case. 

FIND Ua, aK;      IN tAxis;       BY JUPITER;       TO MINIMIZE error 
 
global all 
problem Convection  ! Reaction 
C ---------------------------------------- 
C --- Calculus Programming example: 1D Equation; 
PDE Initial Value Problem 
C --- Method of Lines 
C ---------------------------------------- 
  dynamic U1t, U1, U2t, U2, U3t, U3 
C 
C User parameters ... 
  p1 = 1.23:  p2 = 9.87:  aK = .3 
  ipoints = 20  ! grid pts. over x-axis 
  tFinal =  1   ! not sure when to stop 
C 
C x-parameter initial settings: x ==> i 
  xFinal=100:  dx= xFinal/ipoints:  ip=ipoints:  yesno= 
0 
 
C t-parameter initial settings: t ==> j 
  tPrint = tFinal/20 
  allot U1(ip), U1t(ip), U2(ip), U2t(ip), U3(ip), U3t(ip) 
 
  find Ua,aK;  in tAxis;  by jupiter;  to minimize error 

  yesno=1:   call Axis ! print results 
end 
model tAxis 
C ... Integrate over t-axis 
C settings at t = 0 
  do 1 ii = 1, ipoints 
    U1(ii)=exp(-((ii-1)*dx-10)**2 / 15):   U3(ii)=1 
 1  continue 
  do 2 ii = 1, ipoints 
    U2(ii)=U1(ip-ii+1) 
2 continue 
 
  t=0:  tPrt=tPrint:  dt= tPrt / 10 
  Initiate ISIS;  for PDE; & 
    equations U1t/U1,U2t/U2,U3t/U3;  of t;  step dt;  to 

tPrt 
  do while (t .lt. tFinal) 
    Integrate PDE;  by ISIS 
    if( t*yesno .ge. tPrt) then 
      print 79, t, (U1(ii), ii=1,ip) 
      print 79, t, (U2(ii), ii=1,ip) 
      print 79, t, (U3(ii), ii=1,ip) 
    end if 
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    tPrt = tPrt + tPrint 
  end do 
79 format(1x,f8.4,1x,20(g14.5, 1x)) 
end 
model PDE ! Partial Diff. Equ. 
C ! Method of Lines 
  if( t .ge. tFinal/2 .and. & 
    t .lt. tFinal/2+dt) error= (U2(16)-.7654)**2   ! BC1: 
U2(16)=.7654 @ t=tFinal/2 
  do 20 ii=1,ipoints-1  ! System of ODEs 
    U1t(ii)=p1*(U1(ii+1)-U1(ii))/dx - aK * U1(ii) * 
U2(ii) 

    U2t(ii)=p2*(U2(ii+1)-U2(ii))/dx - aK * U1(ii) * 
U2(ii) 
    U3t(ii) = aK * U1(ii) * U2(ii) 
 20  continue 
  U1t(ip)=p1*(U1(ip)-U1(ip-1))/dx - aK * U1(ip) * 
U2(ip) 
  U2t(ip)=p2*(U2(ip)-U2(ip-1))/dx - aK * U1(ip) * 
U2(ip) 
  U3t(ip)=aK * U1(ip) * U2(ip) 
end 

Computer Output for Jupiter Solver: 

   ooo 

~~~ AT TAXIS[34]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.43E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
~~~ AT TAXIS[34]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.48E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
 
--- JUPITER SUMMARY, INVOKED AT CONVECTI[15] FOR MODEL TAXIS ---- 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER ... [INITIAL] 1 
 UNKNOWNS 
   UA 0.000000E+00 1.910618E+00 
   AK 1.000000E+00 1.000000E+00 
 OBJECTIVE 
   ERROR 5.838906E-01 1.715911E-01 
 
 
---END OF LOOP SUMMARY 
 
 
~~~ AT TAXIS[34]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.11E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 
~~~ AT TAXIS[34]  OPERATION: Calculus Mode Assignment 
*** OUT-OF-RANGE ARGUMENT TO  EXP  (I.E.-0.14E+03) IS REPLACED 
BY THE LIMIT (-0.10E+03) 

Findings 
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Application Problem 4.3 

Body Plasma Chemistry10 

Problem Description 
Determine the concentration of a Therapeutic treatment drug - and for that matter any drug - that is 
in the body over a period of time by finding: 

1. The rate constant (Ka) that determines the diffusion of therapeutic treatment drug from the 
stomach into the blood-stream (plasma); 

2. The rate at which the drug enters and leaves the tissues, K12 and K21; 

3. The loss of therapeutic treatment drug into the urine, K1; 

4. The break-down of therapeutic treatment drug into conjugated form and DEGT, K2 + K3; 

5. The volume of blood, V. 

?? 6. The binding or non-binding of the drug with free proteins in the plasma, K? 

The body tissues utilize the drug and therefore an amount is removed by the body's filtering system, 
i.e. the Kidneys and urine.  As with most compounds, some binding with proteins can occur, as well 
as conjugation and degradation of the drug.  This will also provide information as to how often the 
treatment drug needs to be administered to keep the concentration high enough to allow for the 
required treatment to occur. 

Given: Observed values (concentrations) for the plasma levels of the therapeutic treatment drug; 
observed accumulated values (amounts) of the therapeutic treatment drug, conjugated therapeutic 
treatment drug and DEGT (degraded therapeutic treatment drug); and the dose of therapeutic 
treatment drug. 

Goal/Objective: Unknown to author.  If you know what the goal/objective should be, please contact 
us so future versions of this textbook will be able to show a complete problem with answers. 

TISSUES

DEGT

DEGT_C

N_C

Bound Drug

Free Drug

K

K

K K

K

K

12 21

3

2

1

a

PLASMA
URINE

 

                                                 
10 Wolski, D. and Petersen, D.M., about 1977 
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NPt = Total therapeutic treatment drug in plasma 
NPf = Free therapeutic treatment drug in plasma 
NT = therapeutic treatment drug in tissues 
Nu  = therapeutic treatment drug excreted 
N_Cu = Conjugated therapeutic treatment drug excreted 
DEGTu = Total (free and conjugated) DEGT excreted 
D  = Dose of therapeutic treatment drug 
V  = Volume of distribution 
Pn  = Protein binding constants 

Constraints: 
[NPf] = f( [NPt], P1, P2, P3, P4) 
d[NPt]

dt  = Ka *D/V * e (-Ka*t) - K12 [NPf] + K21 [NT] - (K1 + K2 + K3) [NPf] 

d[NT]
dt   = K12 [NPf] - K21 [NT] 

d[Nu]
dt   = K1 V [NPf] 

d[N_Cu]
dt   = K2 V [NPf] 

d[DEGTu]
dt   = K3 V [NPf] 

where "[ X ]" implies Concentration of X 
and Ky represent Rate constants,  y = a, 12, 21, 1, 2 & 3 

"BOUND THERAPEUTIC TREATMENT DRUG" is that portion of Therapeutic treatment drug in 
the plasma that is bound to protein and thus unable to participate in other reactions.  In analyzing 
blood samples, no distinction can be made between free [NPf] and protein-bound therapeutic 
treatment drug and thus the observed values are total therapeutic treatment drug [NPt].  The function 
that relates NPf to NPt is shown in the 1st equation.  It involves finding a root of a 3rd order 
polynomial, the coefficients of which are functions of NPt and the four protein binding constants. 

The four reactions involving N_C, DEGT and DEGT_C that are shown without a rate constant are 
non-limiting reactions and assumed to be instantaneous.  No distinction is made between free 
DEGT and conjugated DEGT (DEGT_C), they are simply totaled as DEGT in the model. 

Computer Code 
The following code is in the PROSE computer language.  It is close to the FortranCalculus language 
but needs some editing.  If you are interested in completing this example and understand it, please 
contact us. 

Problem DrugConcentration 
execute Initialize 
b = Data( .05, 1, .005, .1, .5, .5, 50) 
Find k, v; in DrugModel;   by Hera (Optcont);   with bounds b;   to minimize error 

End 
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Model DrugModel 
local i, j 
plasma = 0: tissue = 0: excret = 0: error = 0 
bsamp = 1: usamp = 1: time = 0: dt = dtstart 
Initiate Gemini( StepSize);   for Kinetics;  & 
    equations dplasma / plasma, dtissue / tissue, dexcret / excret;  & 
    of time;  step dt;    to tnext 
execute Tprint 
for i = 1 to nb + nu   do 

if samptype(i) is blood then 
tnext = bloodtime( bsamp) 
integrate Kinetics 
error.b( bsamp) = plasma / obs.plasma( bsamp) - 1 
es = error.b( bsamp)**2: w = dplasma**2 + 1 
we = es / w: error = error + es 
if( bloodtime( bsamp) .ne. urinetime( usamp)) execute Bprint 
bsamp = bsamp + 1 

else 
tnext = urinetime( usamp) 
integrate Kinetics 
for j = 1 to 3   do 

error.u( usamp, j) = excret(j) / obs.excret( usamp, j) - 1 
es = ( error.u( usamp, j)**2 ) / weight 
w = dexcret(j)**2 + 1: we = es / w: error = error + es 

repeat 
if urinetime( usamp) .ne. bloodtime( bsamp - 1) 

then execute Uprint 
else execute Buprint 

close 
usamp = usamp + 1 

close 
repeat 

   oldk = k: oldv = v 
execute Eprint: olderror = error 

end  [ DrugModel] 
Model Kinetics 

execute ProBind 
dtissue = k(2) * free - k(3) * tissue 
dplasma = k(1) * dose / v * Exp(-k(1)*time) - (k(4)+k(5)+k(6)) * free - dtissue 
dexcret(1) = k(4) * free * v: dexcret(2) = k(5) * free * v 
dexcret(3) = k(6) * free * v 

end 
Model ProBind 

a = ap - plasma: b = bp + bp2 * plasma: c = cp * plasma 
free = plasma / 10 
for ii = 1 to 20   do 

xu = ((free + a) * free + b) * free + c 
xl = (3 * free + 2 * a) * free + b 
xu = xu / xl: free = free - xu 
if( Abs( xu) .lt. .005 * free)   exit 

   repeat 
free = free + xu / 2 

end 
Controller Optcont for Hera 

detail=1:  detout=0:  maxit=7:  adjust=2:  improve=5.e-4 
End 
Controller StepSize for Gemini 

maxerr = .0001 
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end 
Procedure Tprint 

eject 'Calculated values for this simulation.' Page 
vector print k, v 
dk = Sub( oldk, k) rdk = Div( dk, k)rdk = Mul( rdk, 100) 
dv = oldv - v:rdv = dv / v * 100 
skip 4 lines 

   display (for i = 1 to 6, k(i)), v, (for i = 1 to 6, dk(i)), dv,  & 
 (for i = 1 to 6, rdk(i)), rdv   in  & 
 ' k(1) k(2) k(3) k(4) k(5) k(6) v'  & 
 ' Value: **.*** ***.** **.**** **.*** ***.*** **.*** ****',  & 
 ' Change: **.*** ***.** **.**** **.*** ***.*** **.*** ****',  & 
 ' PrCnt Chg: **.** **.** **.** **.** **.** **.** **.**' 
skip 4 lines 
text print  'Time ---Therapeutic treatment drug, Micrograms/Milliliter------- cum.  & 
 amounts excreted, Milligrams TTD equiv----' 
text print  ' Hrs ------Plasma------ -Tissue- --Free-- -----Therapeutic treatment drug-----[  & 
 ] ----Conjugated---- -----Total DEGT----' 

end [.Tprint] 
Procedure Bprint 

local i 
display time, plasma*1000, error.b( bsamp)*100, tissue*1000, free*1000  & 
 in ' **  ****.*** (****.**) ****.*** **.***** [  & 
 ]     ---       ---      ---       ---      ---       ---' 

end 
Procedure Uprint 

local i, erru: Allot erru(3) 
for i = 1 to 3 erru(i) = error.u( usamp, i) *100 
display time,excret(1), erru(1), excret(2), erru(2), excret(3), erru(3)  & 
 in ' ** --- --- --- --- [  & 
 ] ****.***.(**** **) ****.***.(**** **) ****.***.(**** **)' 

end 
Procedure BUprint 

local i, erru: Allot erru(3) 
for i = 1 to 3 erru(i) = error.u( usamp, i) *100 
display time, plasma*1000, error.b( bsamp-1)*100, tissue*1000, free*1000  & 
 excret(1), erru(1), excret(2), erru(2), excret(3), erru(3)  & 
 in ' **  ****.*** (****.**) ****.*** **.***** [  & 
 ] ****.***.(**** **) ****.***.(**** **) ****.***.(**** **)' 

end 
Procedure Eprint 

de = error -olderror: rde = de * 100 / error 
skip 4 lines 
display error, de, rde,  & 
 in 'Error:  ***.******;  Change:  ***.*****;  % Change:  ***.*****' 

end 
Procedure Initialize 

blood = 1: urine = 2: weight = 1 
read data 
allot bloodtime(nb), obs.plasma(nb), error(nb) 
allot urinetime(nu), obs.excret(nu,3), error.u(nu,3) 
allot excret(3), dexcret(3), samptype(nb+nu) 
allot p(4), k(6), oldk(6), dk(6), rdk(6) 
read data 
oldk = k: oldv = v 
ap = p(1) + p(2) + p(3) + p(4) 
bp = p(1) * p(4) + p(2) * p(3) + p(2) * p(4) 
bp2 = -(p(2) + p(4)): cp = - p(2) * p(4) 
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display dose, dtstart, nb, nu, blood, urine, ap, bp, bp2, cp   in  & 
   '****  *.***  * * * *  *.***E***  *.***E***  **.***E***  **.***E***' 
vector print p, bloodtime, obs.plasma, urinetime, obs.excret, samptype 

End 
 
 



 2011 Optimal Designs Enterprise System of Differential Equations 76 

Application Problem 4.4 

Modeling a Nanostructured Solar Cell11 

Goal/Objective: Unknown to author.  If you know what the goal/objective should be, please contact 
us so future versions of this textbook will be able to show a complete problem with answers. 

Problem Description 
Problem: How to develop solar cells with a new (higher) efficiency; grätzel cells. 

There are many things said about what’s most important for the solar cell. So what they need is a 
model to know what’s the rate is limits for the whole system. By then they can choose what 
combination of parameters will give the best solar cell. The model shown is a one-dimensional non-
steady state model; a start to compare it with the Laser experiments. The laser experiments are one 
of the things they use to predict the efficiency. 

But without a model, does experiments really tell one anything?  This model is only for one 
excitation from a laser beam and to analyze how the decay of all species are.  There is a model done 
for steady state, but its not really working very good in practice.  Simulating the non-steady state 
model for some time should converge to the steady state solution when there is equilibrium in the 
system.  This means when the change of all species are zero over the film.  This could be interesting 
to compare with other steady-state models. 

When we are talking about efficiency, it should be for simulation of the whole system.  Then we 
have to add certain things.  There are continuous excitations of electrons which is the starting 
conditions in this model for the electrons and the excited dye.  There are a few more reactions and 
we have to consider the other part of the solar cell which isn’t contained by nanostuctrured TiO2. 

The main thing about the efficiency is that we want as many electrons leaving the back contact 
which is at x=0.  In the reality the electrons will go out in an outer circuit to make a full circuit.  But 
in the Laser experiments this does not happen because the outer circuit is open.  In reality we will 
get out a current dependent on the incident light.  There are many ways to measure the efficiency.  
IPCE(\lambda) incident-photon-to-current efficiency says how much of the incident light was 
converted to external current. 

Title: Modeling a Nanostructured Solar Cell 

Short review of the system: 

We have a dye sensitizer attached to nano-structured Titanium dioxide (TiO2) film. The nano-
structured particles are in a dye which transports the electrons from the electrode to the dye 
sensitizer.  Incident light at a certain wavelength excites electrons in the dye sensitizer.  So what 
happens to this electron after the excitation?  A very fast process in nanosecond scale injects the 
electron to the TiO2 and its making a random walk (that’s what most people think its doing) to the 
back contact.  A new electron from the dye is put in the place of the injected electron.  The 
electron’s goes through the nano-structured film to a back contact to the outer circuit and we have a 
total circuit. 

But there are other reactions involved in the process.  The excited electron can travel other ways 
then to the back contact like reacting with the dye or dye sensitizer.  These reactions are limiting the 
efficiency of the cell. 

                                                 
11  Jarl xxx, Stanford University, (Mechanical?) Engineering, 1994. 
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Thus I thought it would be a good idea for the model to set up rate constants for all these reactions.  
Make a discretization along x which is the distance to the back contact.  And the step through time 
and see how the kinetics, diffusion and the electric field is changing the concentration of the species 
along x for different times. 

A macroscopic model for the concentration of s ( the dye sensitizer) could look something like this: 

kinetics: 
ds(x,t) / dt = -k_3*s(x,t)*e(x,t)-k_4*s(x,t)*i(x,t) 

(k_3 and k_4 rate constants e = electron concentration, i = iodine conc.) 

diffusion 
ds(x,t) / dt =  D*d^2(s(x,t))/dx^2      

(D = diffusion constant) 

electric field E(x,t): 
ds(x,t) / dt  =  my*ds(x,t) /dt*dE(x,t)/dt 

(my = mobility for the species) 

The electric field we get from integrating concentrations of all the charged species along x. 

 

 

 

 

 

 

 

 

 

 

 

Explanations of each colour: 

         = the dye which is the charge carrier, giving new electrons to the dyes and get new one at the 
anode. It is a redox couple of Iodine.  It can also react with the excited electrons which gives a less 
good efficiency.  There are also other leakage’s that contribute to decline 

      = Dye molecules, the electrons of those are excited at incident light of certain wavelengths 

         = The nanostructured semi conductor, most used is TiO2, the electrons diffuse in this medium 
towards the back contact. 

     =  back contact (x=0), where the electrons go to get to outer circuit, anode. 

      =  end of the nanostructured film, x=8*10^(-6) 

        =  the “entrance” for the electrons from outer circuit, the cathode. 

------ 

 

x 
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We start with the species in the solar cell 
S+  = excited dye 
S    = dye 
I-     = Iodine 
I3-   = three iodine 
I0    = iodine radical 
I02- = di iodine radical 

There are some reactions between the species during simulation with reaction rates k1..k6 
{S+} + {e-}   ->  {S}                  k_1 
{S+} + {I-}    ->  {I0}                  k_2 
{I0}   + {I-}    ->  {I02-}              k_3 
2{I02-}         ->  {I3-} + {I-}        k_4 
{I02-} + {e-}  ->  2{I-}                k_5 
{I3-} + 2{e-}  ->  3{I-}                k_6 

The concentrations of each species is defined as 
s(x,t)  =  {s+} i(x,t)   =  {I-} 
e(x,t)  =  {e-} w(x,t)  =  {I02-} 
q(x,t)  = {I3-} z(x,t)  = {I0} 

The starting conditions are ( after a laser pulse there is excitation of the dyes s(x,0) and we look at 
the relaxation of all species after that) 

s(x,0) = 360*10^(-9)*0.34*10^6*0.1*exp(-0.34*10^6*x) 
i(x,t)  = 0.5 e(x,t)  = s(x,0) 
w(x,t) = 0.0 q(x,t)  = 0.05 
z(x,t) = 0.0 

The partial differential equations with electric field diffusion and reactions with the diffusion 
constants:  Di, De, Dw, Dq, Dz and mobility constants:  my_s, my_i, my_e, my_w, my_q we set the 
constants 

diffusion: 
Ds, Di, Dq, Dw = 1.5*10^(-9) 
De = 200*10^(-9) 

mobility: 
my_s, my_i, my_w, my_q = 1.5*10^(-9)*1.602*10^(-19)/(1.38*10^(-23)*273) 
my_e = 200*10^(-9)*1.602*10^(-19)/(1.38*10^(-23)*273) 

rate constants: 
k_1 = 1.0 * 10^(-6) 
k_2 = 3.0 * k_1 k_3 = 4.0 * k_1 
k_4 = 5.0 * k_1 k_5 = 6.0 * k_1 
k_6 = 9.0 * k_1 

movement from diffusion: 
ds(x,t)/dt = 0.0  ( stationary ) 
di(x,t)/dt = Di*d^2(i(x,t))/dx^2 
de(x,t)/dt = De*d^2(e(x,t))/dx^2 
dw(x,t)/dt = Dw*d^2(w(x,t))/dx^2 
dq(x,t)/dt = Dq*d^2(q(x,t))/dx^2 
dz(x,t)/dt = Dz*d^2(z(x,t))/dx^2 
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x will be between 0 and 
8*10^(-6) which is the 
thickness of the film where 
those reactions are. 

At the boundaries we need to 
approximate the derivatives 
each time step for the 
diffusion and the electric 
field. There is no flow of 
particles out of these 
boundaries so we could set 
the concentrations change to 
zero at the boundaries; i.e. 
for the boundaries: 
di(x,t)/dx=0     de(x,t)/dx=0 
dw(x,t)/dx=0 dq(x,t)/dx=0 
dz(x,t)/dx=0 

So far, this is a initial value 
problem with six coupled 
nonlinear partial differential 
equations. 

Future: 
Making a full scaled 3 
dimensional model and 

optimize the parameters for a optimal solar cell.  Most of the parameters are adjustable, they are all 
dependent of the materials used.  There are many different things said about what the cell efficiency 
really depends on.  Some even say that the important thing is to have as good a cathode as possible 
and others say its something completely different.  A model is needed to guide the research for a 
better solar cell. 
 

Computer Code 
Problem SolarCel 
  include 'SolarCel.inc' 
C  Ok we start with the species in the solar cell: 
C ---------------- 
C  S+  = excited dye              S    = dye 
C  I-     = Ioidine                  I3-   = three iodine      I0    = iodine radical        I02- = di idodine radical 
C  we have some reaktions between the species during simulation  with reaction rates k1...k6: 
C ---------------- 
C  {S+} + {e-}    ->  {S}                  k1 
C  {S+} + {I-}    ->  {I0}                 k2 
C  {I0} + {I-}    ->  {I02-}               k3 
C  2{I02-}        ->  {I3-} + {I-}         k4 
C  {I02-} + {e-}  ->  2{I-}                k5 
C  {I3-} + 2{e-}  ->  3{I-}                k6 
C  the concentrations of each species is defined as: 
C ---------------- 
C  s(x,t)  =  {s+}       i(x,t)  =  {I-}      e(x,t)  =  {e-} 
C  w(x,t)  =  {I02-}     q(x,t)  =  {I3-}     z(x,t)  =  {I0} 

movement from electric force: 
ds(x,t)/dt = my_s*s(x,t)*dE(x,t)/dx+my_s*E(x,t)*ds(x,t)/dx 
di(x,t)/dt  =  my_i*i(x,t)*dE(x,t)/dx+my_i*E(x,t)*di(x,t)/dx 
de(x,t)/dt = my_e*e(x,t)*dE(x,t)/dx+my_e*E(x,t)*de(x,t)/dx 
dw(x,t)/dt = 
my_w*w(x,t)*dE(x,t)/dx+my_w*E(x,t)*dw(x,t)/dx 
dq(x,t)/dt  =  
my_q*q(x,t)*dE(x,t)/dx+my_q*E(x,t)*dq(x,t)/dx 
dz(x,t)/dt = 0 ( not charged ) 
   ! next comes from Poisson’s equation 
dE(x,t)/dx = 26.19925089*(s(x,t)-i(x,t)-e(x,t)-w(x,t)-q(x,t)) 

That makes the Electric field E=0 over the whole film at 
time t=0, (sum of all charges in the simulation cell will 
always be zero). 

kinetics: 
ds(x,t)/dt = - k_1*s(x,t)*e(x,t)  - k_2*s(x,t)*i(x,t) 
di(x,t)/dt =  - k_1*s(x,t)*e(x,t)  - k_3*i(x,t)*z(x,t) 
de(x,t)/dt = - k_1*s(x,t)*e(x,t)  - k_5*w(x,t)*e(x,t) -
k_6*q(x,t)*e(x,t) 
dw(x,t)/dt = - k_5*w(x,t)*e(x,t) + k_3*i(x,t)*z(x,t) - 
2*k_4*w(x,t)^2 
dq(x,t)/dt =   k_4*w(x,t)^2  - k_6*q(x,t)*e(x,t) 
dz(x,t)/dt =  - k_3*i(x,t)*z(x,t) + k_2*s(x,t)*i(x,t) 
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C  The partial differential equations with electric field diffusion and reactions with the diffusion constants: 
C  Di, De, Dw, Dq, Dz and mobility constants: mys, myi, mye, myw, myq we set the constants: 
C  diffusion: 
  constDs = 1.5*1.e-9  :   constDe = 200*1.e-9 
  constDi = constDs    :   constDq = constDs  :  constDw = constDs 
  print *,'Const.',constDs,constDi,constDe,constDw,constDq,constDz 
C  mobility: 
  mys = 1.5*1.e-9*1.602*1.e-19/(1.38*1.e-23*273)     myi = mys     :    myw = mys    :    myq = mys 
  mye = 200*1.e-9*1.602*1.e-19/(1.38*1.e-23*273) 
  print *, 'My.', mys, myi, mye, myw, myq, myz 
C  rate constants: 
  k1 = 1.0 * 1.e-6:    k2 = 3 * k1:     k3 = 4 * k1:   k4 = 5 * k1:    k5 = 6 * k1:   k6 = 9 * k1 
  print *, 'Ks.', k1, k2, k3, k4, k5, k6 
C  x will be between 0 and 8*1.e-6 which is the thickness of the 
C  film where those reactions are: 
   xfinal = 8*1.e-6: xprint = xfinal / 100 
  tfinal = 1.e2: tprint = tfinal / 100: dt = tprint / 10: dx = xprint / 10 
C  At the boundaries I suppose we need to approximate the derivatives 
C  each time step for the diffusion and the electric field. There is 
C  no flow of particles out of these boundaries so we could set the 
C  concentrations change to zero at the boundaries; i.e for the boundaries. 
   didx=0: dedx=0: dwdx=0: dqdx=0: dzdx=0 
C  the starting conditions are ( after a laser pulse there is 
C  excitation of the dyes s(x,0) and we look at the relaxation 
C  of all species after that): 

  initiate JANUS; for distance; equations  & 
       dsdx/s, d2idx/didx, didx/i, d2edx/dedx, dedx/e, d2wdx/dwdx,  & 
       dwdx/w, d2qdx/dqdx, dqdx/q, d2zdx/dzdx, dzdx/z, dEsumdx/Esum;  & 
       of x;  step dx; to xf; 
  print *,'        TIME           DSDT           S           DIDT              I' 
  xf=xprint 
  do while (xf .le. xfinal) 
    integrate distance; by JANUS 
    print '(7(1pg13.5))', x, s, i, e, w, q, z 
C         @curves('plot') 
    xf=xf+xprint 
  end do 
C       @show('plot') 
end 
model distance 
  include 'SolarCel.inc' 
  s  = 360*1.e-9*0.34*10**6*0.1*exp(-0.34*10**6*x) 
  i= 0.5:  e = s:  w = 0.:  q = 0.05:  z = 0. 
C  movement from diffusion: 
  dsdt = 0. ! stationary 
  didt = constDi * d2idx:  dedt = constDe * d2edx 
  dwdt = constDw * d2wdx:  dqdt = constDq * d2qdx 
  dzdt = constDz * d2zdx 

  initiate ATHENA; for ide; equations  & 
       dsdt/s, didt/i, dedt/e, dwdt/w, dqdt/q, dzdt/z; of t;  step dt; to tf; 
  print *,'        X              TIME           DSDT           S           DIDT              I' 
  tf=tp 
  do while (tf .le. tfinal) 
    integrate ide; by ATHENA 
    print '(6(1pg13.5))', x, t, dsdt, s, didt, i 
    tf=tf+tp 
  end do 
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  find dsdx, didx, dedx, dwdx, dqdx, dzdx, dEsumdx;  & 
       in eForce; by AJAX( cntrl1);  to match xs, xi, xe, xw, xq, xz, xEsum 
C         @show('plot') 
end 
model ide   ! Implicit Partial Differential Equations 
  include 'SolarCel.inc' 
  find dsdt, didt, dedt, dwdt, dqdt, dzdt;  & 
       in kinetics; by AJAX( cntrl1);  to match ts, ti, te, tw, tq, tz 
end 
model kinetics 
  include 'SolarCel.inc' 
C  kinetics: 
  ts = dsdt - (- k1 * s * e  - k2 * s * I): ti = didt - (- k1 * s * e  - k3 * i * z) 
  te = dedt - (- k1 * s * e  - k5 * w * e -k6 * q * e) 
  tw = dwdt - (- k5 * w * e + k3 * i * z - 2 * k4 * w**2) 
  tq = dqdt - (k4 * w**2  - k6 * q * e): tz = dzdt - (- k3 * i * z + k2 * s * i) 
end 
model eForce 
  include 'SolarCel.inc' 
C  movement from electric force: 
  xs = dsdt - (mys * s * dEsumdx + mys * Esum * dsdx) 
  xi = didt - (myi * i * dEsumdx + myi * Esum * didx) 
  xe = dedt - (mye * e * dEsumdx + mye * Esum * dedx) 
  xw = dwdt - (myw * w * dEsumdx + myw * Esum * dwdx) 
  xq = dqdt - (myq * q * dEsumdx + myq * Esum * dqdx) 
  xz = dzdt - 0                  ! not charged 
    ! next comes from poissons equation 
  xEsum = dEsumdx - (s + i + e + w + q) ! Objective is xEsum = 0 ??? 
C  I guess this is a initial value problem with six coupled nonlinear 
C  differential equations.         /Jarl 
end 
controller cntrl1( AJAX) 
  summary=0 
end 
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Chapter 4 Exercises 

1. What computer code statement in the above ‘Body Plasma Chemistry’ (see Application 
Problem 4.3) makes this a parameter estimation problem instead of an initial value problem?  

2. Assume you are designing a new ‘Nanostructured Solar Cell’ (see Application Problem 4.4).  
What parameters might you be tweaking for a better Solar Cell design? 

What objective might you have (e.g. maximize energy gain OR minimize weight)?  State 
objective in the form minimize/maximize ______ . 

After what statement would you put a FIND statement in computer code in order to find the 
optimal parameter values?  This FIND statement would be followed by two more additional 
statements; an END and then a MODEL.  These statements would be like the following: 

FIND p1, p2, p3, etc.   in MyThing    ooo   to Minimize/Maximize ____ 

End 

Model MyThing 
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5 Partial Differential Equations 

A Parameter Estimation for Partial Differential Equations (PDEs) in an Initial Value Problem (IVP) 
or Boundary Value Problem (BVP) is solved using Method of lines (MOL) and the Calculus-level 
‘Find’ statement shown here: 

IVP: Find a   ooo   To Match Error 

BVP: Find a, ydot0, y2dot0   ooo   To Match Error 

Where ‘a’ may be a vector with ‘n’ parts, a1, a2, a3,…an; 
ydot0, y2dot0,etc. are derivatives at independent variable = 0; and, 
‘error’ is the objective function. 

The ‘find’ statement is wrapped around an integrate and integration statement in order to solve the 
ODE. while finding the best ‘a’ parameter(s) for the given problem. 

Ydot0, y2dot0, etc. variables may be arrays that are necessary to solve MOL problems. 

The ‘a’ parameter(s) are varied to fit one’s ‘m’ data points that make up the objective function, 
error.  This technique can vary as many parameters as you want; e.g. 5 or 50 or 50,000.  If there are 
less equations than parameters m < n, this would be classified as an under-determined system of 
equations.  If there are more equations than parameters, m > n, this would be an over-determined 
system.  Under- or Over-determined systems might force one to switch solvers to do the job. 
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Application Problem 5.1 

PDEs: Stock Market to Biology 

The following article was found on the http://www.brucelilly.com/particles.html website in 2012. 
 

The following piece appeared in the Spring, 2002 issue of Research and Creative 
 Activity magazine, a publication from Indiana University. 

Jacob Rubinstein, Professor of Mathematics 
 
"You give me anything, any area, from the stock market to biology, and I’ll show you where partial 
differential equations appear." 

The voice of Jacob "Koby" Rubinstein, professor of mathematics at IU Bloomington, bursts with 
enthusiasm as he points at the door to his office and launches into an explanation of how math 
figures in door manufacturing.  And that’s just the beginning. Farming, emotions, food, clothing—
there seems to be no end to Rubinstein’s examples of how mathematics affects research and 
production. 

After explaining how math has helped makers of garage doors understand why a certain bar tended 
to break in the same place over and over again, he moves on to economics.  "In the stock market, 
the main tool for the options market is partial differential equations," he says.  "Now, every main 
brokerage firm is employing mathematicians and physicists to solve partial differential equations 
arising in the stock market." 

Rubinstein, who came to Bloomington from Technion Israeli Institute of Technology in Haifa, 
Israel, has made a career out of connecting the ethereal world of higher math to the concrete world 
in which we live.  An applied mathematician, Rubinstein has analyzed problems ranging from the 
behavior of superconductors at extremely low temperatures to the behavior of human beings in 
highly complex situations.  (One example of his work in the latter area concerns auction theory, a 
subset of a field known as game theory).  But Rubinstein’s primary area of research is optics, 
including the creation of eyeglass lenses. 

Many PDE problems require systems of PDEs to model them.  Thus we are including a rough draft 
of solving a system of PDEs here. 

Problem Description 
We are converting the above Telegrapher’s equations  code (see Application Problem 5.3) from a 
PDE to a system of PDEs.  The key change is converting variables into array variables; e.g. U 
becomes U(n). 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
(a, U0, & Ut0), as it calls your math model.  The ‘in’ phase tells the name of math model routine.  
The ‘by’ phase tells what solver to use, Zeus here.  And the ‘to’ phase tells what the objective 
function is; ‘minimize’ means converge objective function to a minimum value, ‘errsum’ variable 
in this case. 
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FIND a, U0. Ut0;      IN tAxis;       BY ZEUS;       TO Minimize errsum 
 
The following is just a rough sketch of necessary code to solve such a problem 
 
global all 
problem Telegraf(880000,15000,15000) 
C ------------------------------------ 
C --- Calculus Programming example: Telegraph 
Equation; a PDE Initial 
C --- Value Problem solved. 
C ------------------------------------ 
  real l 
  dynamic U, Ut, Utt, Ut0, U0, Uend, UtEnd, U0Start 
  nEqu= 3  ! # of PDEs 
C 
  ooo 
 
  allot U(nEqu,ip), Ut(nEqu,ip), Utt(nEqu,ip), 
Ut0(nEqu,ip) 

  allot U0(nEqu), Uend(nEqu), UtEnd(nEqu), 
U0Start(nEqu) 
  ooo 
 
model PDE  ! System of Partial Differential Equ. 
C                ! Method of Lines 
  do 20 ii=2,ipoints-1 !System of ODEs 
    Utt(1,ii) = … equ. 1 
    Utt(2,ii) = … equ. 2 
      ooo 
    Utt(nEqu,ii) = … equ. N 
20  continue 
end 
  ooo 
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Application Problem 5.2 

Burgers’ Equation 
(A non-linear Partial Differential Equation) 

Problem Description 
Burgers’  Equation12, a PDE, occurs as a model for a number of 
physical problems (e.g. Fluids, Heat, Traffic, Shock Waves, etc.).  
The equation is Ut + Ux U = vis Uxx, where U = U(x,t), Ux = 
Partial of U w.r.t. X, & vis = viscosity.  Burgers' Equation is a 
nonlinear partial differential equation similar in structure to the 
Navier-Stokes Equation. 

An example optimization problem with Burgers’ Equation is 
found in Optimal Control for fluid flow.  The problem is to 
determine the most inexpensive control that will produce a flow to 
match a given target.  Solution:  Add 1) the user parameters that 
can be varied in your model, 2) objective function, & 3) outer find statement.  Then you are ready to 
solve your optimization problem.  Now tweak, tweak, tweak until experience corrects your math 
model and objective function for your problem.  (I’m speaking from experience; one job/problem 
took some two years to solve!  Our math model and objective function had to be modified and 
modified and ... modified.) 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
‘a’, as it calls your math model.  The ‘in’ phase tells the name of math model routine.  The ‘by’ 
phase tells what solver to use, ajax here.  And the ‘to’ phase tells what the objective function is; 
‘match’ means all following variables must equal zero, ‘error’ variable in this case. 

FIND a;      IN xAxis;       BY AJAX;       TO MATCH error 

 

                                                 
12 The physicist Johannes Martinus Burgers (1895-1981) was a professor at the Technological University of Delft 
where he worked on turbulence.  His simplified equation for turbulence is now what is called Burgers’ Equation. 
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      global all 
      problem BurgersPDE 
 
C ----------- viscous Burgers' equation ----------- 
C 
C     Ut = - U * Ux + viscosity * Uxx ... with Boundary 
Conditions 
C 
C ------------------------------------------------------ 
 
C I'm new to PDE solving, so please check my work! 
C Internet shows solutions to Burgers Equation that 
differ greatly!!! 
C Are the solutions different types; e.g. Steady State 
vs. zzz? 
 
C -------------------------------------------------------- 
C --- Calculus Programming example: Burgers' 1D 
Equation; a PDE Initial 
C --- Value Problem solved using Method of Lines. 
C -------------------------------------------------------- 
C ... Warning ... a numerical problem exists when 'dt' 
or 'viscosit' values 
C ...   are too small. 
C -------------------------------------------------------- 
        dynamic U, Ut, error 
C 
C User parameters ... 
        viscosit = 1         ! viscosity between .1 & .001 are 
of interest 
        tFinal =  .5          ! not sure when odd numeric 
problem surfaces 
        jpoints = 10*tFinal  ! grid pts. over t-axis 
C 
C x-parameter initial settings: x ==> i 
        xFinal= 1 
        dx = .1 
        ipoints = xFinal/dx + 1.99        ! grid pts. over x-
axis 
        allot U( ipoints), Ut( ipoints), error( ipoints) 
 
C t-parameter initial settings: t ==> j 
        dt = .005: tPrint= dt*jpoints:  pts = ipoints 
        print 78, "viscosity, dt, dx, ipoints =", viscosit, 
dt,dx,pts 
 78     format( 1x, a, f5.3, 20(2x, f8.4)) 
C 
        call xAxis 

      end      
      model xAxis 
C ... Integrate over x-axis ... for a steady state solution 
        last = 55 ! number of iterations for Steady 
State solution 
       do 10 i = 1, last 
        t= 0:   tPrt = tPrint:  dt = tPrt / 10 
        <error> = <U> 
        Initiate ISIS;  for PDE; 
     ~       equations Ut/U;  of t;  step dt;  to tPrt 
        do while (t .lt. tFinal) 
          Integrate PDE;  by ISIS 
          if((t .ge. tPrt) .and. (i .eq. 1)) then 
      print 79, t, (U( j), j = 1, ipoints) 
            tPrt = tPrt + tPrint 
          elseif((t .ge. tPrt) .and. (i .eq. last)) then 
      print 79, t, (U( j), j = 1, ipoints) 
            tPrt = tPrt + tPrint 
          elseif(t .ge. tPrt) then 
      print 78, "-------------", i 
            print 78, " " 
            tPrt = tPrt + tPrint 
          endif 
        end do 
 10 continue 
        <error> = <U> - <error> 
        print 78, " " 
        print 78, "i & 'error' array follows = ", i 
        print 79, t, (error( j), j = 1, ipoints) 
        print 78, "-------------" 
        print 78, " " 
 78     format( 1x, a, i8) 
 79     format( 1x, f4.3, 20(1x, f8.5)) 
      end 
      model PDE        ! Partial Differential Equation 
C                              ! Method of Lines 
C Boundary Conditions for Burgers' Equation 
        U(1) = 1/(1 + Exp(-t/(4*viscosit)) 
        U(ipoints) = 1/(1 + Exp((2-t)/(4*viscosit)) 
 
  do 20 jj = 2, ipoints-1       ! System of ODEs 
... Method of Lines 
    Ut(jj) = -U(jj) * (U(jj+1)-U(jj-1)) / (2*dx) 
    Ut(jj) = Ut(jj) + viscosit*(U(jj+1)-2* 
U(jj)+U(jj-1))/(dx*dx) 
 20     continue 
      end 
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Computer Output for AJAX Solver: 
 
viscosity, dt, dx, ipoints =1.000    0.0050    0.1000   11.0000 
 
  t U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 
.025  0.50156  0.49998  0.49668  0.49047  0.48142  0.47014  0.45700  0.44174  0.42370  0.40252  0.37901 
.025  0.50156  0.49998  0.49668  0.49047  0.48142  0.47014  0.45700  0.44174  0.42370  0.40252  0.37901 
.050  0.50312  0.49811  0.49255  0.48567  0.47693  0.46604  0.45291  0.43753  0.42003  0.40080  0.38048 
.075  0.50469  0.49786  0.49073  0.48271  0.47333  0.46227  0.44935  0.43458  0.41816  0.40044  0.38196 
.100  0.50625  0.49815  0.48983  0.48085  0.47084  0.45953  0.44677  0.43255  0.41704  0.40052  0.38343 
.125  0.50781  0.49874  0.48951  0.47977  0.46924  0.45771  0.44505  0.43126  0.41646  0.40090  0.38491 
.150  0.50937  0.49956  0.48961  0.47928  0.46833  0.45661  0.44402  0.43056  0.41633  0.40152  0.38639 
.175  0.51094  0.50054  0.49003  0.47923  0.46796  0.45609  0.44355  0.43034  0.41655  0.40232  0.38788 
.200  0.51250  0.50164  0.49071  0.47954  0.46801  0.45602  0.44351  0.43050  0.41705  0.40328  0.38936 
.225  0.51406  0.50285  0.49157  0.48012  0.46838  0.45630  0.44382  0.43096  0.41777  0.40436  0.39085 
.250  0.51562  0.50413  0.49259  0.48091  0.46901  0.45685  0.44439  0.43165  0.41867  0.40553  0.39234 
.275  0.51718  0.50548  0.49373  0.48187  0.46985  0.45762  0.44518  0.43252  0.41970  0.40677  0.39383 
.300  0.51874  0.50687  0.49495  0.48296  0.47084  0.45856  0.44613  0.43354  0.42084  0.40807  0.39532 
.325  0.52030  0.50830  0.49626  0.48415  0.47195  0.45964  0.44721  0.43467  0.42206  0.40942  0.39682 
.350  0.52186  0.50975  0.49761  0.48542  0.47316  0.46081  0.44839  0.43589  0.42335  0.41081  0.39831 
.375  0.52342  0.51123  0.49902  0.48676  0.47444  0.46207  0.44965  0.43718  0.42469  0.41222  0.39981 
.400  0.52498  0.51273  0.50045  0.48814  0.47579  0.46340  0.45097  0.43852  0.42608  0.41366  0.40131 
.425  0.52654  0.51424  0.50192  0.48956  0.47718  0.46477  0.45234  0.43991  0.42749  0.41512  0.40281 
.450  0.52810  0.51576  0.50340  0.49102  0.47861  0.46619  0.45375  0.44133  0.42893  0.41659  0.40432 
.475  0.52965  0.51729  0.50490  0.49249  0.48007  0.46763  0.45520  0.44278  0.43040  0.41807  0.40583 
.500  0.53121  0.51883  0.50642  0.49399  0.48155  0.46910  0.45666  0.44425  0.43187  0.41956  0.40733 
 
ELAPSED TIME =   19.28 SECONDS 

Findings 
It seems that Find statements with PDE models using Method of Lines require a lot of memory.  To 
lower memory usage, use Find statement solvers that use only 1st order partials when possible; i.e. 
jacobian matrix or equivalent.  Solvers using 2nd order partials as in the Hessian matrix use more 
memory. 

Method of lines in FortranCalculus uses less memory than an algebraic language does.  For 
example, a 2nd order ODE uses one dimensional arrays; a 3rd order ODE uses two dimensional 
arrays; etc.  This is a hugh savings in required computer memory! 
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Application Problem 5.3 

Telegrapher’s Equation 

Problem Description 
The Telegrapher’s Equation is of the following form: c2 2 U = Utt + (α + β) Ut + αβU.  We will 
solve it for the 1-dimensional case where there is no grid work necessary; i.e. method of lines is not 
used.  The 2-dimensional case will require method of lines and thus a grid.  The find statement will 
be used to find parameters a1, a2, a3 and initial condition U0 used to start integration process. 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
(a, U0, & Ut0), as it calls your math model.  The ‘in’ phase tells the name of math model routine.  
The ‘by’ phase tells what solver to use, Zeus here.  And the ‘to’ phase tells what the objective 
function is; ‘minimize’ means converge objective function to a minimum value, ‘errsum’ variable 
in this case. 

FIND a, U0. Ut0;      IN tAxis;       BY ZEUS;       TO Minimize errsum 
 
 
global all 
problem Telegraf(880000,15000,15000) 
C ------------------------------------ 
C --- Calculus Programming example: Telegraph 
Equation; a PDE Initial 
C --- Value Problem solved. 
C ------------------------------------ 
  real l 
  dynamic U, Ut, Utt, Ut0 
C 
C User parameters: 
  r=141.3:  aL=.1543:  c=15.72:  g=8.873 
  alpha=g/c:  beta=r/aL:  c=sqrt(aL*c) 
  ipoints=10  ! grid pts. over x-axis 
  xFinal= 10  ! final x 
  tFinal= 1   ! final time 
C 
C x-parameter init. settings: x ==> i 
  ip=ipoints:  dx=xFinal/ipoints 
C 
C t-parameter initial settings: t ==> j 
  tPrint=tFinal/ip:  yesno= 0 
  allot U(ip), Ut(ip), Utt(ip), Ut0(ip) 
C 
  a=1    ! parameters to vary 
  do 1 i = 1, ipoints 
    Ut0(i)= 2 
1 continue 
  U0=-.2345:  Uend=3.4567:  UtEnd=9.8765 
  Find a, U0, Ut0;  in tAxis;  by Zeus;  to minimize 
errsum 
  Yesno= 1:  Call tAxis ! print results 
end 
model tAxis 

C settings at t = 0 
  do 1 ii = 1, ipoints 
    xPrt=ii * dx:  call fnctU0( xPrt) 
    Ut(ii)=Ut0(ii):  U(ii)= U0start 
 1 continue 
  t=0:  tPrt=tPrint:  dt=tPrt/10 
  Initiate ISIS;  for PDE; & 
    equations Utt/Ut, Ut/U;  of t;  step dt;  to tPrt 
  errsum=(0-U0)**2+(Ut(1)-Ut0(1))**2 
  do while (t .lt. tFinal) 
    Integrate PDE;  by ISIS 
    if( t*yesno .ge. tPrt) print 79, t, (U(ii),ii=1,ip) 
    tPrt=tPrt + tPrint 
  end do 
  errsum=errsum+(U(ip-1)-Uend)**2 + (Ut(ip-1)-UtEnd)**2 
! BC at tFinal 
  print 79, errsum, errsum 
 79  format( 1x,f8.4,20(g14.5, 1x)) 
end 
model PDE  ! Partial Differential Equ. 
C          ! Method of Lines 
  do 20 ii=2,ipoints-1 !System of ODEs 
    Uxx=(U(ii+1)-2*U(ii)+U(ii-1))/(dx*dx)!4 2nd order in 'x' 
    Utt(ii)= c**2 * Uxx - (alpha + beta)* Ut - alpha*beta*U 
    ! add function with relation to a1,a2, & a3 parameters. 
 20  continue 
end 
model fnctU0(xx)  ! Initial starting 
  U0start = 0     ! values @ t = 0 
  tmp = 1+(2*(xx-.75)/.157)**2 
  if((xx.gt.0.5) .and. (xx.le.1.0)) & 
    U0start=a*(x-.5)*(1-x)*(.5-1/tmp) 
end 
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Computer Output for HERA Solver: 
  0.1000 -0.51264E-02 -9.2392 -9.2597 -9.2598 -9.2598 
  0.2000 0.19487 -36.540 -36.856 -36.857 -36.857 
  0.3000 0.39487 -82.261 -83.814 -83.826 -83.826 
  0.4000 0.59487 -146.34 -151.13 -151.20 -151.20 
  0.5000 0.79487 -228.32 -239.77 -240.01 -240.01 
  0.6000 0.99487 -327.39 -350.58 -351.29 -351.30 
  0.7000 1.1949 -442.47 -484.34 -486.05 -486.09 
  0.8000 1.3949 -572.24 -641.62 -645.32 -645.43 
  0.9000 1.5949 -715.26 -822.84 -830.06 -830.33 
  1.0000 1.7949 -870.01 -1028.2 -1041.2 -1041.8 
  1.1000 1.9949 -1035.0 -1257.6 -1279.7 -1281.0 
 
   ooo 
 
  0.1000 -0.22468 0.38391 0.38826 0.38827 0.38827 
  0.2000 -0.21550 1.0700 1.0943 1.0944 1.0944 
  0.3000 -0.20631 1.9948 2.0700 2.0710 2.0710 
  0.4000 -0.19713 3.0899 3.2668 3.2705 3.2706 
  0.5000 -0.18794 4.2841 4.6345 4.6454 4.6455 
  0.6000 -0.17876 5.5056 6.1216 6.1479 6.1485 
  0.7000 -0.16957 6.6841 7.6745 7.7303 7.7319 
  0.8000 -0.16038 7.7533 9.2371 9.3443 9.3484 
  0.9000 -0.15120 8.6522 10.751 10.941 10.950 
  1.0000 -0.14201 9.3272 12.157 12.472 12.490 
  1.1000 -0.13283 9.7327 13.391 13.885 13.920 
 
Ran out of memory!!!  Still not done converging to a solution. 

Findings 
Need more computer memory to complete this problem. 
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Chapter 5 Exercises 

1.  Have a PDE that you want solved?  Give it a try with Method of Lines within 
FortranCalculus.  How difficult was it?  Easier using FortranCalculus than other languages?  
Estimate time savings over previous languages? 

2. Method of lines is but one way to solve PDEs.  If you know of another method, try solving 
Burgers’ Equation using your method within FortranCalculus.  Other methods are listed 
on Wikipedia’s free encyclopedia at Numerical partial differential equations. 

3. What variable(s) in above computer code statements for Burgers’ Equation makes this a 
parameter estimation problem instead of a boundary value problem? 

4. Assume you are designing a new black box that requires tweaking some parameters in the 
Telegrapher’s Equation.  Let’s say parameters r, aL, c, & g might need some tweaking for 
a better black box design.  Show the computer code statement(s) with changes that would be 
necessary for an improved solution.
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6 Inverse Problems 

Inverse Problems (IPs) are an important special set of problems that fit the statement 
“You know what you want, you just don’t know how to get there.”  A proper directive 
can get an Inverse Problem solved in hours!  Here are some examples of Inverse 
Problems: 

a. Law enforcement: Shells found at scene where did it come from? 
b. Airplane crash with wreckage all over the place.  How did these parts get where 

they lay? 
c. Missile target: Have target, how to get missile there? 
d. Want a ‘black box’ to have an efficiency of 54.3%.  How to design/build such a 

black box? 
e. Car seat storage H x W x D slot, how to design seat so as it will fit into slot while 

maximizing seat comfort? 

A Parameter Estimation for an Inverse Problem is solved using the Calculus-level Find 
statement shown here: 

Find a   ooo   To Match Error 

If a BVP then: Find a, ydot0, y2dot0   ooo   To Match Error 

Where ‘a’ may be a vector with ‘n’ parts, a1, a2, a3,…an; 
ydot0, y2dot0,etc. are derivatives at independent variable = 0; and, 
‘error’ is the objective function. 

If the IP problem contains any differential equations, the ‘find’ statement is wrapped 
around an integrate and integration statement in order to solve the ODE or PDE while 
finding the best ‘a’ parameter(s) for the given problem. 

The ‘a’ parameter(s) are varied to fit one’s ‘m’ data points that make up the objective 
function, error.  This technique can vary as many parameters as you want; e.g. 5 or 50 or 
50,000.  If there are less equations than parameters m < n, this would be classified as an 
under-determined system of equations.  If there are more equations than parameters, m > 
n, this would be an over-determined system.  Under- or Over-determined systems might 
force one to switch solvers to do the job. 
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Application Problem 6.1 

Custom Thermistor Design 

A thermistor is a type of resistor whose resistance varies with temperature, more so than 
in standard resistors.  Several Silicon Valley companies (Aertech Industries of Sunnyvale, 
CA being first) in the 1970s needed to design a customized thermistor that would go 
through several custom data values.  A customized circuit board design had up to four 
thermistors in series on the top branch and four more possible on the bottom branch.  
Thus, these two branches were in parallel.  The Calculus-level code might be along the 
line shown here.  The first pass has the solver summary turned off so user won’t see all the 
execution going on.  Once the best combination is discovered, the solver summary is 
turned on and the ‘find’ statement is re-calculated so the results will now be shown. 

The following is just a rough sketch of necessary code to solve such a problem 

Computer Code 
Global all 
Problem thermistor 
  Yesno=0  ! summary report off 
  R=.998    ! .2% Improvement factor 
 
  call initialize 
  call botOnly 
  call parallel  ! comparing all combination of 
thermistors; 
! 0-4 on top level & 1-4 on bottom level 
 
  Yesno=1:  ! summary report on 
  If( jjtherm .eq. 0) then 
    Allot abot(iitherm), alow(iitherm), 
ahigh(iitherm) 
    <abot>=1:  <alow>=1:  <ahigh>=ntypes 
 
   Find abot; in therm; by thor(cntl) &; 
     with lower alow and upper ahigh; & 
     to minimize errsum  ! and thus Cost 
 
  else 
    ntherms=iitherm+jjtherm 
    Allot abot(iitherm)), atop(jjtherm)), 
alow(ntherms), ahigh(ntherms) 
    <abot>=1:  <atop>=1:  <alow>=1:  
<ahigh>=ntypes 
 
    Find abot,atop; in therm; by thor( cntl); with lower 

alow and upper ahigh; to minimize errsum 
 
  End if 
  Errmin=errsum 
End 
Model botOnly 
  If( yesno .eq. 0) then 
    Errmin=9999:  iitherm=9999:  jjtherm=0 

  End if 
  Do 10, i=1,4 
    Allot abot(i), alow(i), ahigh(i) 
    <abot>=1:  <alow>=1:  <ahigh>=ntypes 
    Find abot; in therm; by thor(cntl); & 
      with lower alow and upper ahigh; & 
      to minimize errsum  ! and thus Cost 
    If(errsum .lt. r*errmin) then Errmin=errsum: 
iitherm=i: 
endif 
10 continue 
end 
Model parallel ! series 
  jjtherm=9999 
  Do 20, j=1,4 
    Do 10, i=1,4 
      ntherms=i+j 
      Allot abot(i), atop(j), alow(ntherms), 
ahigh(ntherms) 
      <abot>=1:  <atop>=1:  <alow>=1:  
<ahigh>=ntypes 
      Find abot,atop; in therm; by thor(cntl); with 

lower alow and upper ahigh; to 
minimize errsum  ! and Cost 

      If(errsum .lt. r*errmin) then 
        Errmin=errsum:  iitherm=i:  jjtherm=j 
      endif 
10  continue 
20 continue 
end 
controller cntl( thor) 
  summary=yesno   ! solver only prints when 
summary=1! 
end 
model therm 
  <toptherm>=0:  <bottherm>=0 
  if( jjtherm .eq. 0) then 
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    toptherm=1 
    do 12,jj=1, j 
      jbot=abot(jj) 
      call thermMod( tdata, jbot) 
      <bottherm>=<bottherm>+<rcalc> 
12  continue 
  else 
    do 21,ii=1, i 
      itop=atop(ii) 
      call thermMod( tdata, itop) 
      <toptherm>=<toptherm>+<rcalc> 
21  continue 
    do 22,jj=1, j 
      jbot=abot(jj) 
      call thermMod( tdata, jbot) 
      <bottherm>=<bottherm>+<rcalc> 
22  continue 
  endif 
  if( jjtherm .eq. 0) then 
    <rcalc>=<bottherm> 
  else 
    do 33,ij=1, npoints 
      rcalc(ij)=(toptherm(ij) 
*bottherm(ij))/(toptherm(ij) +bottherm(ij)) 
33  continue 
  endif 
  err1=((rcalc(1)-rcalc(2))–(rdata(1)-
rdata(2)))**2  ! relative errors 
  err2=((rcalc(1)-rcalc(3))–(rdata(1)-
rdata(3)))**2 

  err3=((rcalc(3)-rcalc(2))–(rdata(3)-
rdata(2)))**2 
  errsum=err1+err2+err3:  cost=(iitherm+jjtherm)  
!*unit_prise 
end 
procedure initialize 
  nytpes=123:   npoints=3 
  allot tdata(npoints), rdata(npoints)  ! user data 
  tdata=data(150, 181, 205) 
  rdata=data(90, 76, 70) 
  allot therms(ntypes, npoints), temps(npoints), 
res(npoints) 
  temps=data(150, 180, 200) 
  therms=data(90, 74, 68, 
               90, 75, 71, 
                ooo  ('ntypes' datasets of 'npoints') 
end 
model thermMod(t, ijk) 
  dimension t(*) 
  res(1)=therms(ijk,1):  res(2)=therms(ijk,2):  
res(3)=therms(ijk,3) 
  y1=res(1)*(t(1)-temps(2))*(t(1)-temps(3)) 
  y2=(temps(1)-temps(2))*(temps(1)-temps(3)) 
  rcalc(1)=y1/y2 
  y1=res(2)*(t(2)-temps(1))*(t(2)-temps(3)) 
  y2=(temps(2)-temps(1))*(temps(2)-temps(3)) 
  rcalc(2)=y1/y2 
  y1=res(3)*(t(3)-temps(1))*(t(3)-temps(2)) 
  y2=(temps(3)-temps(1))*(temps(3)-temps(2)) 
  rcalc(3)=y1/y2 
End 

Findings 
A program similar to this one above saved many man-hours in finding the best 
combination of in-house thermistors to build a customized thermistor as required by their 
customer.  The customized circuit used the fewest number of in-house thermistors while 
also having the best fit to customer data.  The design time was in seconds (actually 
overnight!) and saved up to two weeks on worst case problems. 

This is an algebraic problem but it also is an inverse problem where one knows what they 
want, just need to find a way to get there. 

Is this circuit optimum?  While working through this calculus code, it seemed to me that 
a leading thermistor component would be very helpful.  Unfortunately, no data for testing 
idea. 

The ‘therms’ data in source code shows resistance at ‘npoints’ temperatures.  Calculating 
a table showing the resistance difference between all ‘npoints’ could help one solve the 
tough custom thermistor problems.  Do the same type table for your desired differences; 
i.e. ‘rdata’ values in source code. 
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Application Problem 6.2 

Drug Development 

Problem Description 
A drug company is trying to develop a drug with a given/desired half-life.  They know what they 
want, they just don’t know how to get their, a true inverse problem (IP)!  (Most IPs contain an 
implicit equation for solving.)  They have several basic components that need to be combined to 
together to determine what combination will provide the best fit to their desire half-life.  Here is 
the basic code for finding the best combination. 

Note: The way the problem was first stated made it an inverse problem but it could also be 
classified as boundary value problem (BVP)  

The following is just a rough sketch of necessary code to solve such a problem 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
(vol1, vol2, & vol3), as it calls your math model.  The ‘in’ phase tells the name of math model 
routine.  The ‘by’ phase tells what solver to use, Asolver here; e.g. AJAX.  And the ‘to’ phase 
tells what the objective function is; ‘match’ means all following variables must equal zero, ‘g’ 
variable in this case. 

FIND vol1,vol2,vol3;      IN drugs;       BY Asolver;       TO MATCH g 
 
Global all 
Problem halflife 
  prnt = 0:   desired = 1.234    ! desired half-life time 
  R = 0.9998 ! 2% Improvement factor 
  nQty = 2:   nDrugs = ??? 
  vol1 = 1:   vol2 = 0:   vol3 = 0 
  Do 20 i=1, nDrugs 
    Do 20 j = i+1, nDrugs 

      Find vol1,vol2; in drugs;  by Ajax(cntl);  to Match g 

      If(g .lt. R*errmin) then 
        Errmin=g: idrug=i:  jdrug=j 
      endif 
20 continue   
  nQty = 3:   vol1 = 1:   vol2 = 0:   vol3 = 0 
  Do 30 i=1, nDrugs 
    Do 30 j = i+1, nDrugs 
      Do 30 k = j+1, nDrugs 

      Find vol1,vol2,vol3; in drugs;  by Asolver(cntl);  to 
Match g 

      If(g .lt. R*errmin) then 
        Errmin=g: idrug=i:  jdrug=j:  kdrug =k 
      endif 
30 continue   

  nQty = 2:   prnt = 1   ! Print final results 
  i=idrug:  j=jdrug:  k = kdrug:  vol1=1:  vol2=0:  vol3=0 
  if( kdrug .lt. 1) then 

      Find vol1,vol2; in drugs;  by Asolver(cntl);  to 
Match g 

  else 
    nQty = 3 

      Find vol1,vol2,vol3; in drugs;  by Ajax(cntl);  to 
Match g 

  endif 
end 
controller cntl for ‘Asolver’ 
   summary = prnt    ! only prints when summary=1 
end 
model drugs 
  dimension cl( ’nDrugs’)  ! ‘nDrugs’ characteristic go 
here 
  data cl/ 0.1234, 987.54, etc. /  ! ‘cl’ = clearance factor 
 
  p1 = vol1 / cl(i):   p2 = vol2 / cl(j):   p3 = 0 
  if( nQty .eq. 3)  p3 = vol3 / cl(k) 
  halfLif = .693 * (p1 + p2 + p3) 
  g = (desired – halfLif)**2 
  cost = ???:     sellPric = ???:    profit = sellPric - cost 
end 

 

Findings 
This drug program would execute all ‘nDrugs’ models and determine which model was best.  No 
output during the first pass.  Once the best was determined, the ‘prnt’ switch would be turned on 
to allow for a summary output to be printed showing the resulting parameters vol1, vol2, & vol3. 
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Application Problem 6.3 

Heat Transfer over 1D Slab 

Problem Description 
Heat Transfer over 1D slab surface; a PDE Inverse Problem solved using Method of Lines.  
Given data points at 600o and 1200o temperatures; i.e. U(x, 600) & U(x, 1200) at ‘ipoints’ over 
the x-axis. 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
(U0, aK, & h), as it calls your math model.  The ‘in’ phase tells the name of math model routine.  
The ‘by’ phase tells what solver to use, Mars here.  And the ‘to’ phase tells what the objective 
function is; ‘minimize’ means all following variables must converge towards zero, ‘fitErr’ 
variable in this case. 

FIND U0, aK, h;      IN tAxis;       BY JUPITER;       TO MINIMIZE fitErr 
 
global all 
problem Heat-IP(30000, 5000, 5000) 
C --------------------------------------------------------
---------------- 
C --- Calculus Programming example: Heat 
Transfer over 1D slab surface; 
C --- a PDE Inverse Problem solved using 
Method of Lines. 
C --- 
C --- When the geometry, the initial condition, 
the boundary condition, 
C --- material properties and the heat source term 
are known, the temper- 
C --- ature distribution, U(x, t), can be 
calculated. These problems 
C --- are then called the direct problems. On the 
other hand, when any of 
C --- this information, or a combination of them, 
is unknown, but the 
C --- field U(x, t) is known somewhere in the 
space-time domain an estima- 
C --- tion of the unknown quantities may be 
attempted. These are known as 
C --- the inverse problems. 
C --------------------------------------------------------
---------------- 
  dynamic U, Ut, U0 
  dynamic U600, U1200 
C 
C User parameters ... 
  alpha = 2.e-5 ! thermal diffusion coefficient 
C ans.  aK = 10.5 ! W/mK ! thermal conductivity 
(in the solid) 
C ans.  h = 22.5  ! W/m2K ! heat convection at 
slab surface 

  ipoints = 11 ! grid pts. over x-axis 
  jpoints = 100 ! grid pts. over t-axis 
  tFinal =  1200 ! not sure when odd numeric 
problem surfaces 
C 
C x-parameter initial settings: x ==> i 
  ip = ipoints 
  xFinal=1:  dx=xFinal / (ipoints-1) 
  allot U( ip), Ut( ip), U0( ip) 
C 
C t-parameter initial settings: t ==> j 
  jp = jpoints 
  tPrint = tFinal / jpoints 
 
  Ua=1:  h=22:  U00=1:  ak=11:  prnt = 0 
  print *, h, U00, ak, dx, tPrint 
  do 10 i = 1, ipoints ! Initial values for U0 
array 
    U0(i) = U00 
 10  continue 
 
  <U600>=data( 66.935, 78.466, 84.376, 86.697, 
87.419, 87.602, & 
     87.641, 87.649, 87.650, 87.650, 87.650) 
  <U1200>=data( 61.632, 72.887, 80.239, 
84.365, 86.361, 87.200, & 
     87.509, 87.610, 87.640, 87.648, 87.650) 
 
  find U0,aK,h; in tAxis; by Jupiter; & 
    to minimize fitErr 
  prnt = 1.:     call tAxis 
end 
model tAxis 
C settings at t = 0 
! print *, 're-start integration' 
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  do 10 ii = 1, ipoints 
    U(ii) = U0(ii) 
10 continue 
  tPrt = tPrint:  dt = tPrt / 20:  t = 0:  fitErr = 0 
C ... Integrate over t-axis 
  Initiate ISIS;  for PDE; & 
    equations Ut/U;  of t;  step dt;  to tPrt 
  do while (t .lt. tFinal) 
    Integrate PDE;  by ISIS 
    if( t .ge. tPrt) then 
      if( t .eq. 600) then  ! fit data points 
        do 12 ik = 1, ip 
          fitErr = fitErr + (U(ik) - U600(ik))**2 
12      continue 
      elseif( t .eq. 1200) then  ! fit data points 
        do 13 ik=1,ip 
          fitErr=fitErr+(U(ik) - U1200(ik))**2 

13      continue 
      end if 
      if(prnt.eq.1) print 79, t,fitErr,(U(ii),ii=1,5) 
      tPrt = tPrt + tPrint 
    end if 
  end do 
79  format(1x,g10.4,1x,10(g11.5, 1x)) 
end 
model PDE   ! Partial Differential Equation 
C           ! Method of Lines 
  do 20 ij = 2, ipoints - 1       ! System of ODEs 
    tmp=(U(ij+1)-2*U(ij) + U(ij-1))  ! using 
central difference 
    Ut(ij)= - alpha * tmp / dx**2 
20 continue 
end 

Computer Output for JUPITER Solver: 
 
--- JUPITER SUMMARY, INVOKED AT HEATIP[26] FOR MODEL TAXIS ---- 
 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      OBJECTIVE CRITERION SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER ... [INITIAL] 1 
 UNKNOWNS 
   U0(1) 1.000000E+00 6.613667E+01 
   U0(2) 1.000000E+00 7.236318E+01 
   U0(3) 1.000000E+00 7.783022E+01 
   U0(4) 1.000000E+00 8.202572E+01 
   U0(5) 1.000000E+00 8.482188E+01 
   U0(6) 1.000000E+00 8.642815E+01 
   U0(7) 1.000000E+00 8.721404E+01 
   U0(8) 1.000000E+00 8.753322E+01 
   U0(9) 1.000000E+00 8.763345E+01 
   U0(10) 1.000000E+00 8.765071E+01 
   U0(11) 1.000000E+00 8.764430E+01 
   AK 1.100000E+01 1.100000E+01 ! aK & H missing from math 
   H 2.200000E+01 2.200000E+01 ! model, error on my side! 
 OBJECTIVE 
   FITERR 1.514486E+05 9.652942E+01 ! needs better convergence 
 
 
---END OF LOOP SUMMARY 
 
 
12.00 0.00000 66.137 72.381 77.861 82.059 84.850 
24.00 0.00000 66.137 72.400 77.892 82.093 84.879 
36.00 0.00000 66.137 72.419 77.923 82.127 84.908 
48.00 0.00000 66.137 72.437 77.954 82.162 84.937 
60.00 0.00000 66.137 72.456 77.986 82.196 84.966 
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  ooo 
 
1176. 55.795 66.137 74.814 82.807 86.653 87.860 
1188. 55.795 66.137 74.829 82.908 86.716 87.887 
1200. 96.529 66.137 74.843 83.012 86.779 87.913 
ELAPSED TIME =   77.45 SECONDS 
 

Findings 
Poor convergence; missing two parameters in model; a tough problem when one retires without 
any textbooks! 
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Application Problem 6.4 

Robot Arm Movement 

Problem Description 
Design a mechanical/robotic arm that can move to any point Pk specified in a three-dimensional 

array "Points".  What is the maximum allowable standard deviation in each arm or limb 
component when the standard deviation requirement around any point Pk is the radius r? 

The mechanical arm must be able to pick up an item laying on the floor and move the item to a 
point on a wall.  The robotic arm's base is in the X-Z plane, Dz feet from the wall, and centered 

around the Pk points that are in the X-Y plane.  The destination points Pk form a rectangle on the 

wall.  The robotic hand and rectangle corners (c1, c2, c3, & c4) are located in XYZ ordinates at 

Arm_base = (0, 0, 0) 
c1 = ( - .5 Width, Bottom, Dz) 

c2 = ( .5 Width, Bottom, Dz) 

c3 = ( .5 Width, Bottom + Height, Dz) 

c4 = ( - .5 Width, Bottom + Height, Dz) 

where Width = 10, Height = 5, Bottom = 2, and Dz = 5 

Rotation: 
Find the angle  for rotating the arm about the Y-axis such that the Z-axis component of any Pk 

point is zero.  That is transform Pk into Pj through rotation as stated here: 
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Solve: 
Thus, find a  that will yield the objective function Gk  = (0, 0, 0) for the following definition 

   kjk PinelDirectionaPG )2(cos_  

Now that the arm lays entirely in a new X-Y (prime) plane, the problem is reduced to a 2-
dimensional space.  A 2-dimensional matrix, rotate(i), will now be used to build the necessary 

math model for this mechanical arm.  The rotation matrix rotate(i) is defined as follows: 












ii

ii
irotate





cossin

sincos
)(  

Assume any destination point Pk in the original X-Y plane is now transformed into the point Pj in 

the new X-Y plane. 
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A new angle j  and objective function, G j , are defined as 

j+1 = j+1 - j = an angle relative to the previous limbj 

endArmPG jj _  

The following code has not been tested to solve such a problem.  But seems complete and ready 
for a test case. 

Computer Code 
Here we have a nested group of three find statements. The ‘Find’ statement is the work horse of a 
Calculus-level compiler.  It calls ones math model as many times as necessary in order to 
converge on a solution.  It varies your parameters, in this case (Alimb, Angle, & Phi), as it calls 
your math models at varies levels.  The bottom solver must converge before the one above takes 
its next small delta step in changing its parameter(s).  Here ‘Phi’ parameter must converge before 
‘Angle’ can change its value.  Then ‘Angle’ must converge before ‘Alimb’ can change.  One 
must think through this process before deciding whether to merge parameters onto one find 
statement or not. 

Nesting ‘find’ statements is a very powerful technique to solve company wide problems. 

FIND Alimb;      IN Design;       TO MINIMIZE Errors 
FIND Angle;   IN Rotate;   TO MATCH Xprime(3) 

FIND Phi;   IN Joints;   WITH UPPER Hi   AND LOWER Low; TO MATCH Gjx, Gjy 

 
Problem RobitArm 
  Dynamic Boundary, Alimb, Phi, Alpha, hi, low 
  Call Setup 
!  Find Nlimbs   In ArmMembers   To Minimize 
Errors & Cost ? 
  Do 10 Nlimbs = 2, 3 
    Call ArmMembers 
    Print *, ' Nlimbs = ', Nlimbs, ' With Errors = ', 
Errors 
10 Continue 
End 
Model ArmMembers 
  Allot Alimb( Nlimbs), Phi( Nlimbs), Alpha( 

Nlimbs), Hi( Nlimbs), Low( Nlimbs) 
  Do 20 ij = 1, Nlimbs 
    Hi( ij) = 180:  Low(ij) = -180 
20 Continue 
  Find Alimb   In Design   To Minimize Errors 
End 
Model Design 

  Errors = 0 
  Do 30 ijk = 1, Npoints 
    X1 = Boundary( ijk, 1):  X2 = Boundary( ijk, 

2):  X3 = Boundary( ijk, 3) 
    Angle = 20:  FixedAxis = 3 !"Theta" = 

Angle 
    Find Angle   In Rotate   To Match Xprime(3) 
    Pjx = Xprime(1):  Pjy = Xprime(2) 
    Find Phi   In Joints   With Upper Hi   And 

Lower Low & 
       To Match Gjx, Gjy 
    Errors = Errors + Gjx**2 + Gjy**2 
30 Continue 
  Errors = Errors / Npoints 
End 
Model Joints 
  X2 = 0:  X3 = 0:  Xpos = 0:  Ypos = 0 
  Do 40 ijk = 1, Nlimbs 
    X1 = Alimb( ijk):   Angle = Phi( ijk) 
    call Rotate 
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    Xpos = Xpos + Xprime(1):  Ypos = Ypos + 
Xprime(2) 

40    Continue 
  Gjx = Pjx – Xpos:  Gjy = Pjy – Ypos 
End 
Model Rotate 
  Do 50 ii = 1, 3 
    Do 50 jj = 1, 3 
      a(ii, jj) = 0 
50 Continue 
  If FixedAxis .eq. 1 Then 
    ii = 2:  jj = 3 
  elseIf FixedAxis .eq. 2 Then 
    ii = 1:  jj = 3 
  elseIf FixedAxis .eq. 3 Then 
    ii = 1:  jj = 2 
  Else 
    Abort 
  End if 
  Sign = 1 
  If FixedAxis .eq. 2 then Sign = -1 

  a( ii, ii) = Cosd( Angle):  a( ii, jj) = -Sign * 
Sind( Angle) 

  a( jj, ii) = Sign * Sind( Angle):  a( jj, jj) = Cosd( 
Angle) 

  Do ii = 1 To 3,  Xprime(ii) = a(ii,1) * X1 + 
a(ii,2) * X2 + a(ii,3) * X3 

End 
Procedure Setup 
  Npoints = 4 
  Allot Xprime(3), a(3,3), Boundary( Npoints, 3) 
  Width = 10:  Height = 5:  Bottom = 2:  Dz = 5 
  Do 70 i = 1, 4    ! corners of surface that the 

arm must reach 
    Boundary(i, 1) = .5 * Width 
    Boundary(i, 2) = Bottom 
    Boundary(i, 3) = Dz 
70 Continue 
  Boundary(1, 1) = -.5 * Width 
  Boundary(4, 1) = -.5 * Width 
  Boundary(3, 2) = Bottom + Height 
  Boundary(4, 2) = Bottom + Height 
End 
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Application Problem 6.5 

Plane Crash Locator 

Problem Description 
 
Help!  The equations for modeling flight and debris floating in the ocean, are in need.  If you know the 
equations for either model, please contact us.  When models are found, they will be added here in future 
releases. 
 
An airplane disappears with parts scattered here and there.  Little is known about some of the crash parts 
found and we want to locate the crash point. 

Lets assume we have ‘nparts’ with location coordinates and time when found.  With a debris model (e.g. see 
Gyre Current model) and a few parameter estimates to vary, e.g. wind velocity, current velocity, etc.  The 
crash program could estimate where the debris traveled over the last 5, 10, or more days.  This would give a 
time-line for the debris. 

Next, find the possible path of the airplane, given its last known contact point; i.e time, speed, & coordinates. 

Any constraints?  Any estimate of amount of fuel remaining in the plane should be entered as a limit.  The 
maximum speed a plane can fly may be entered as a limit.  Any other limits? 

Now, let the crash program find a point on the debris time-line that this plane could get to.  The crask 
program would vary the parameters, debris wind velocity, debris current velocity, plane direction and speed, 
in order to find a time point where the two curves meet; the crash point.  Alas, a solution point! 

Unfortuneatly this is a common problem.  Here we will show how to solve this inverse problem.  The larger 
number of items found the better for reconstruction purposes.  We will work at determining a time-line of 
advents. 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls one’s math model as many 
times as necessary in order to converge on a solution.  It varies your parameters, in this case (h2oVel, 
windVel, plane velocity, etc.), as it calls your math models.   

The following code is NOT tested!  It is here to get one started on how to solve such a problem.  The ‘setup’ 
routine has several parameters that need to be set for a true crash case.  With no debris math model, this can’t 
be run.  Need to add a debris math model and some good true settings in setup in order to starting finding my 
typos, missing equations, proper conversions (e.g. minutes to hours), etc.  (The ‘dimension’ statements 
should be replaced with an ‘allot’ statement.  But there is a bug in the allot stmt., so be careful.  My demos 
directory has some examples how to use the allot statement correctly and bypass the bug.) 

The key point in solving this problem involves the parameter ‘theSpot’.  This is the time estimate for the 
crash.  With ‘theSpot’ parameter value, the program calculates the flight time and can estimate the planes 
velocity and direction. 

If the crash is a result of an explosion, the program should provide a good solution.  If the plane goes 
wandering around for more than say a minute or two, it will be harder for the program to find a soltuion 

      global all 
      problem plane 
C Requirement: At lease one piece ('nparts') of debris found of crashed airplane 
        Dimension h2oVel(1), windVel(1), directon(1), velocity(1) 
        Dimension xDebris(1), yDebris(1), tDebris(1), tDays(1) 
        nparts = 1 
 
       call setup 
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       do 10 ij = 1, nparts 
          Find h2oVel(ij), windVel(ij), velocity(ij); 
     ~      with lowers 1, 1, 1, 0; 
     ~      with uppers 0, 0, 0, velMax;  ! only constrain velocity, for now. 
     ~      in crash; by Ajax( cntrl); to minimize gPlane 
          xAverage = xAverage + xLoc(ij)**2:  yAverage = yAverage + yLoc(ij)**2 
 10     continue 
          xAverage = sqrt( xAverage/ nparts): yAverage = sqrt( yAverage/ nparts) 
          print *, ' Average or center location of debris = ', xAverage, yAverage      end 
      model crash 
C  Find the crash spot ... time, xloc, and yloc 
        call location 
C      distance = (plane velocity - wind velocity) * time 
C      plane velocity = wind velocity + distance / time 
        fltTime = (theSpot - tPlane)/60  ! flight time in hours 
        distance = sqrt( (xloc(ij) - xPlane)**2 + (yloc(ij) - yPlane)**2 ) ! where is earth radius and Altidude? 
        gPlane = (velocity(ij))**2 - (windSped + distance / fltTime)**2 
        temp = arctan( (yEnd - yloc(ij)) / (xEnd - xloc(ij))) 
        gPlane = gPlane + direction(ij)**2 - temp**2 
      end 
      model location 
        x0 = xDebris(ij):  y0 = yDebris(ij):  t0 = tDebris(ij) 
        dt = - t0 / 100  ! integrating from found location back to start, thus negative dt. 
        g1 = y - y1  :  x = x1 
        initiate isis; for debris; 
     *     equations y2dot/ydot, ydot/y; 
     *     of t; step dt; to theSpot 
        integrate debris;  by isis 
        terminate debris 
        xloc(ij) = x: yloc(ij) = y 
        direction(ij) = arctan( (yPlane - yloc(ij)) / (xPlane - xloc(ij))) 
      end 
      model debris ! Equations for math model of how debris travels on ocean waves. 
        ooo    ! Litature refers to this as a Reverse Drift 
          Equations must be a function of h2oVel(ij) & windVel(ij) parameters 
          and must be continuous & differentable. 
        ooo 
      end 
      subroutine setup 
  xEnd = 987.12  ! miles ... x-location for destination 
  yEnd = 4321.12  ! miles ... y-location for destination 
  h2oVel(1) = 7.89  ! miles/hour ... estimated water velocity where debris was found 
  windVel(1) = 3.21 ! miles/hour ... estimated wind velocity where debris was found 
  xDebris(1) = 1234.56 ! miles ... x-location where debris found 
  yDebris(1) = 987.65 
  tDays(1) = 5   ! Days, 24 hour periods, debris in water since crash 
  tDebris(1) = 13:45 ! time of day (24-hour clock) when debris was found 
  xPlane = 431.1  ! miles ... x-location where last contact 
  yPlane = 567.89 
  windSped = -200  ! miles/hour ... Head-on wind speed ... in line with flight 
  planeVel = 543  ! miles/hour ... plane's velocity at last known location 
  velMax = 600  ! miles/hour ... plane's Maximum velocity 
  planeDir = 45.67  ! degrees ... direction at last known location 
  altitude = 34567  ! feet ... altitude at last known location ... not sure this is needed 
  tPlane = 21:12  ! time of day when last contact 
  planeTim = 12.34 ! minutes ... estimated time before crash 
  planeTim = planeTim + tConvert( tPlane )  ! convert time to minutes 
 ooo 
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7 Implicit Equations 

An implicit equation has the form y = f(x, y) or yndot = f(x, y, ydot, y2dot,   , yndot) so 
both sides of the equal sign have the y or yndot.  The problem is getting the y or yndot 
both on the left side of the equal sign or somehow determining what the right values for y 
or yndot are that will make these true identities.  By setting your objective function g = y 
– f(x,y) or g = yndot – f(x, y, ydot, y2dot, ooo  , yndot) then the find statement will find 
the appropriate values for y or yndot in order to have g equal to zero. 

 Find y   ooo   To Match g 
or 

Find yndot   ooo   To Match g 

Where y = f(x, y) or yndot = f(x, y, ydot, y2dot,   , yndot); and, 
‘g’ is the objective function. 
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Application Problem 7.1 

System of Implicit Algebraic Equations 

Problem Description 
This is an example of solving a system of implicit algebraic equations.  The value of y is found 
for each value of x and the result is printed.  Substitute your own implicit algebraic equation for 
the ones given and the code below should solve it too. 

Computer Code 
The ‘Find’ statement is the work horse of a Calculus-level compiler.  It calls ones math model as 
many times as necessary in order to converge on a solution.  It varies your parameters, in this case 
(a, b, c), as it calls your math model.  The ‘in’ phase tells the name of math model routine.  The 
‘by’ phase tells what solver to use, ‘ABCsolver’ here.  And the ‘to’ phase tells what the objective 
function is; ‘match’ means all following variables must equal zero, ‘g’ variable in this case. 

The ‘cntrl’ argument is the name of a controller block that has control variables for various 
things.  (Need a manual for more on these variables.)  Here we change the ‘summary’ variable to 
the global variable ‘yesno’.  When ‘summary’ equals zero, no output will be printed or created in 
output file.  Once the solver converges for the first value of x, the following find statements 
should converge rapidly and thus no need to show these summary reports. 

FIND a,b,c;      IN drug?;       BY ABCsolver( cntrl);       TO MATCH g 
 
Global Reals 
Problem implicitAlg 
  yesno = 1:  xstep= .25 
  y1=2:  y2 = 2:  y3= 1 ! Starting values 
  do i=1, 2 
    x= (i-1)*xstep 
    Find y1, y2, y3; in equation; by Ajax( cntrl);  

to match g1, g2, g3 
    y = y1 + y2 + y3 
    Print *, x, y 
  end do 
  yesno = 0 ! turn off controller output … 

not necessary 
  do i=3 50 
    x= (i-1)*xstep 
    Find y1, y2, y3; in equation; by Ajax( cntrl);  

to match g1, g2, g3 

    y = y1 + y2 + y3 
    Print *, x, y 
  end do 
end 
model equation 
    den= 1.1 + (x / 37)**2 – y1*y1 
    g1= y1 – [ -.139 * (x + 63) / den] 
    den= 1.5 + (x / 28)**2 – y2*y2 
    g2= y2 – [.777 * (x – 4.5) / den] 
    den= 1.1 + (x / 26)**2 – y3*y3 
    g3= y3 – [.003 * (x - 144) / den] 
end 
controller cntrl ( Ajax) 
  summary = yesno ! solver only prints 

when summary = 1! 
end 

Computer Output for AJAX Solver: 
 
 
--- AJAX SUMMARY, INVOKED AT IMPALG[10] FOR MODEL EQUATONS ---- 
 
 
   CONVERGENCE CONDITION AFTER  8 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
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 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   Y1 2.000000E+00 2.197415E+00 2.237531E+00 
   Y2 2.000000E+00 1.814254E+00 1.842004E+00 
   Y3 1.000000E+00 9.391304E-01 7.774956E-01 
 CONSTRAINTS 
   G1 -1.019655E+00 -1.511682E-01 -4.090080E-03 
   G2 6.014000E-01 -1.374418E-01 -5.085348E-03 
   G3 5.320000E+00 2.920473E+00 1.649341E+00 
 
  ooo 
 
 LOOP NUMBER ... [INITIAL] 7 8 
 UNKNOWNS 
   Y1 2.000000E+00 2.238679E+00 2.238679E+00 
   Y2 2.000000E+00 1.843112E+00 1.843112E+00 
   Y3 1.000000E+00 -5.218140E-01 -5.221294E-01 
 CONSTRAINTS 
   G1 -1.019655E+00 4.440892E-16 4.440892E-16 
   G2 6.014000E-01 -4.440892E-16 -4.440892E-16 
   G3 5.320000E+00 1.078324E-04 1.453169E-07 
 
 
---END OF LOOP SUMMARY 
 
 
   0.000000000000000 3.55966162824445 
 
 
 
--- AJAX SUMMARY, INVOKED AT IMPALG[10] FOR MODEL EQUATONS ---- 
 
 
   CONVERGENCE CONDITION AFTER  3 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 
 LOOP NUMBER … [INITIAL] 1 2 
 UNKNOWNS 
   Y1 2.238679E+00 2.241173E+00 2.241177E+00 
   Y2 1.843112E+00 1.819766E+00 1.820453E+00 
   Y3 -5.221294E-01 -5.193115E-01 -5.193444E-01 
 CONSTRAINTS 
   G1 -8.909878E-03 -1.470945E-05 -4.018297E-11 
   G2 1.023220E-01 -3.204482E-03 -2.997031E-06 
   G3 -9.645671E-04 1.153337E-05 1.557209E-09 
 
 
 LOOP NUMBER … [INITIAL] 3 
 UNKNOWNS 
   Y1 2.238679E+00 2.241177E+00 
   Y2 1.843112E+00 1.820453E+00 
   Y3 -5.221294E-01 -5.193444E-01 
 CONSTRAINTS 
   G1 -8.909878E-03 0.000000E+00   ! good convergence & 
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   G2 1.023220E-01 -2.625455E-12    ! excellent values 
   G3 -9.645671E-04 0.000000E+00   ! in 3 iterations! 
 
 
---END OF LOOP SUMMARY 
 
 
   0.250000000000000 3.54228585238770 
   0.500000000000000 3.52450507072720 
   0.750000000000000 3.50623793444296 
 
  ooo 
 
    12.2500000000000 -0.807167908292338D-001 
ELAPSED TIME =    0.06 SECONDS 
 

Findings 
Here the objective function g1, g2, & g3 were defined in the form g = ( y ) – [ f( x, y) ] and problem 
converged quickly.  If convergence is slow, try squaring both side of equations and take the difference as 
your objective function; i.e. g = ( y )**2 – [ f( x, y) ]**2.  This often helps rate of convergence. 
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Application Problem 7.2 

2nd Order Implicit Differential Equation 

Problem Description 
Couldn’t find a good implicit equation from industry so this one was fabricated from Application Problem 
3.1.  The ODE equation was squared on both sided of the equal sign and then the equal sign was replaced 
with a minus sign.  Then ‘g’ variable was set equal to this difference.  This is the form one needs for solving 
an implicit equation.  Now a find statement will find the highest order derivative term; i.e. y2dot in this case. 

Computer Code 
Implicit equations require an extra find statement in order to solve for the highest order derivative term as 
shown here.  This second find statement just insures that the objective function, ‘g’ in this case, 
approximately equals zero.  If so, then you have a value for your derivative that balances the equation; a 
solution point! 

FIND y2dot;      IN ide;       BY Ajax;       TO MATCH g 
 
Same code as in Application Problem 3.1 except the following change: 
 
model diffeqs 
  kkk = kkk + 1 
  if(kkk.eq.10) yesno = 0   ! This stops AJAX summary reports … Too much output 
  FIND y2dot;   in IDE;   by AJAX(cntl);   to match g 
end 
model IDE ! Implicit Differential Equation (IDE) 
  g = y2dot**2 - (2 * ydot / x - (1 + a/x**2) * y)**2 
end 
controller cntl( ajax) 
  summary = yesno ! This flag reports only when yesno = 1 
end 
procedure aplot( plot77) 
 

Computer Output for AJAX Solver: 
 
Starting search for parameters to minimize |error| 
 
--- AJAX SUMMARY, INVOKED AT DIFFEQS[63] FOR MODEL IDE ---- 
 
   CONVERGENCE CONDITION AFTER  0 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL]  
 UNKNOWNS 
   Y2DOT 1.000000E+00 
 CONSTRAINTS 
   G 0.000000E+00 
 
---END OF LOOP SUMMARY 
 
 
--- AJAX SUMMARY, INVOKED AT DIFFEQS[63] FOR MODEL IDE ---- 
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   CONVERGENCE CONDITION AFTER  2 ITERATIONS 
      UNKNOWNS NOT CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 2 
 UNKNOWNS 
   Y2DOT 1.000000E+00 9.663029E-01 9.657153E-01 
 CONSTRAINTS 
   G 6.739429E-02 1.135498E-03 3.452120E-07 
 
---END OF LOOP SUMMARY 
 
 
--- AJAX SUMMARY, INVOKED AT DIFFEQS[63] FOR MODEL IDE ---- 
 
   CONVERGENCE CONDITION AFTER  1 ITERATIONS 
      UNKNOWNS CONVERGED 
      CONSTRAINTS SATISFIED 
      ALL SPECIFIED CRITERIA SATISFIED 
 
 LOOP NUMBER ... [INITIAL] 1 
 UNKNOWNS 
   Y2DOT 9.657153E-01 9.661115E-01 
 CONSTRAINTS 
   G -7.651330E-04 1.569335E-07 
 
---END OF LOOP SUMMARY 
 

ooo 

Findings 
Lots of output!  Results are good.
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8 Nesting Solvers 
Nesting is a very important feature. For example, if one needs to tweak ten parameters, all 
parameters could be in one Find statement and thus the solver’s hessian or jacobian matrix 
would require (10*10) 100 storage cells.  Break the 10 parameters into 5 & 5, where one 
Find statement is nested within the other, would reduce the storage requirement to (2*5*5) 
50 storage cells.  Resulting in a 50% savings in storage. 

Another reason to nest is when one’s parameters may have some dependency amongst 
themselves.  A series of Sine curves fitting to data as shown in an earlier example is such a 
problem.  It’s parameters frequency & theta are dependent on their amplitude. 

Nesting also seems to make the coding flow more natural as in the previous Matched Filter 
Design problem.  The filters BandPass had pole parameters in the outer Find statement and 
zero parameters for the StopBand were in the inner Find statement. 
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Application Problem 8.1 

Nesting … Matched Filter 
(Nested Processes … Each Process controlled by a Solver) 

Given n-data points from a Bode plot (see Figure 2.1 below) that define the mainlobe of the desired 
transfer function, find the optimal Pole/Zero constellation such that H(s) has equal sidelobe peak 
amplitudes in a Bode plot and H(s) curve fits the given data in the mainlobe. 

Bode Plot: Mainlobe with 3 Sidelobes 

 Problem Description 
Mainlobe Sidelobes 

 
0                              Z1                              Z2                    Z3                     jW 

Frequency 
Figure 2.1  H(s) Mainlobe & Sidelobe Plot 

Computer Plots 
 

 

Figure 2.2b  Equal Peaks in Sidelobes 
Computer Code 

The following find statement was used to determine the best Pole location for the transfer function 
H(s).  Once the Pole locations are pretty well set, we nest another Find statement to determine where 
the Zeros, on the omega axis, will provide equal peaks in this stopband area of H(s).  The following is 
the outer Find statement. 

FIND gain, Preal, Pimag      IN Transfer      BY JOVE      TO MATCH error 

With good mainlobe parameters, this above find statement executes two nested Find statements to 
find the sidelobe parameters. 

FIND xZeros   IN Stopband   BY HERA    WITH BOUNDS sidelimits 
TO MINIMIZE peak.diff 
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Computer Code 
  PROBLEM FILTER 
       ooo   ! Outer Find statement to determine Passband 
  FIND gain, Preal, Pimag  in Transfer  by JOVE(contrl1)  & 
    with lower h8low  and uppers h8hi  & 
    MATCHING error  TO MINIMIZE errsum 
 
       ooo   ! Middle Find statement to determine Stopband equal ripple 
    FIND xZeros  in stopband  by Hera( contrl2) & 
      with BOUNDS sidelims & 
      TO MINIMIZE peak.diff 
 
       ooo    ! Inner Find statement to locate peaks on omega axis. 
 
       FIND peakloc( jj)  in sidelobe  by hera( contrl3) & 
         with BOUNDS sidelim & 
         TO MAXIMIZE peakampl( jj) 
end 
 

Computer Output for JOVE & HERA Solvers: (download freeware app for more output) 

Findings 

The results were great but tweaking the inner two find statements was a very delicate matter.  A better 
objective would have simplified matters.  For example, if equal ripple would be obtained when the area 
under the transfer function H(s) was minimized, that would have reduced the inner find statements to just 
one.  But no one was such that minimizing the stopband area would guarantee that this would result in equal 
ripple. 

This problem was coded in a few days but required months of time to work through the math calculations 
behind the problem.  The solution was optimal for the frequency domain.  But truncation of numbers from 
converting time domain data to frequency data got us thinking that doing this problem in the time domain 
would be better.  If for no other reason than small truncations in time domain didn’t bother anyone.  The time 
domain problem/solution is an exercise problem in chapter 2. 

Solutions from this calculus problem were optimal and reduced development time from 3 months to less than 
a week. 
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Application Problem 8.2 

Oil Refinery Production 

Problem Description 
An oil company may have many different distillation processes going on at 
each of its refineries.  Each time new crude oil arrives at a refinery, or one 
distillation unit goes in or out of service, a new tweaking of all distillation 
parameters must be done in order to maximize the company’s profit. 

Here we will assume that the company has ‘nDistUnits’ at each refinery and 
‘nRefineries’ for total number of refineries.  The real issue will be agreeing 
on the company objective.  Here we will use maximize profit while 
minimizing pollution. 

 
Marketing effects: pollution is mainly seen as a cost item but it does not 

provide some profit to a company who’s marketing group properly advertises the product as a ‘green’ 
product or has no detrimental chemicals in it?  Check with your marketing group to create a math model 
showing some profit from products that have minimized pollution and add that model to this OilProduction 
program. 

A monitor of present in stock inventories would be helpful for instant updating of ones model as used here. 
 
Refinery Buy/Sell Options: Once one runs this OilProduction program a few times and is confident in its 
results, it would be time to start using it to play ‘what if’ games.  For example, what if another ‘B’ refinery 
was up for sale and your company was trying to decide whether to buy it.  Say this ‘B’ refinery is the same 
relative size with the same number of distillation units as your ‘A’ refinery, just a different location.  Change 
your refinery ‘A’ location in this program and re-run it.  The resulting increase or decrease in ‘profit’ will 
help your company decide to reject ‘B’ refinery or make an offer.  Changing a refineries location will affect 
the distribution cost of your products.  A new location might have a better grade of crude oil; another 
variable to test and see if the new value is worth it from a computer simulation view point. 
 
Another use of this program would be deciding which refinery should get a new distillation unit first.  Every 
one wants to have the latest gadgets in their backyard to show off but these can be very very expensive.  So 
use this program to add a new unit to each refinery one at a time.  This should give you some evidence to 
which site to start implementing new distillation units. 

Computer Code 
Our objective in the first level (or outer) find statement is to determine how much of the various products to 
produce at various refineries in order to maximize the companies profit. 
 

FIND totProdPrct    IN refineries    BY JUPITER 
 MATCHING productErr     TO MAXIMIZE profit 

 

The goal of this 2nd level find statement is to determine product quantities to manufacture at each refinery 
and minimize pollution in the process.  Limits are added to insure that the quantities are above some set 
values and below other values.  Setting the upper limit to the lower limit will stop production of that one 
product; e.g. low(3) equals hi(3) then product(3) will be zero.  There is another constraint that needs to be 
added to the find statement here.  The total crude oil processed at each refinery must equal the total crude oil 
available; no more, no less.  ‘Matching crudeErr’ addition to this 2nd ‘find’ statement will ensure the variable 
‘crudeErr’ is (near) zero. 
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FIND qtyIn    IN distillation    BY JOVE; 
with UPPER hi and LOWER low 

MATCHING crudeErr    TO MINIMIZE pollution 

The following is just a rough sketch of necessary code to solve such a problem.  Calculating the cost of 
manufacturing and distribution, pollution, profits of each product, etc. are left to the user.  Each of these 
variables may require a math model of their own and knowledgeable people to be accurate enough for this 
OilProduction program. 
 
global all 
problem OilProduction 

nRefineries= 22:  nProducts= 33 
dynamic hi, low, totCrudeIn, ooo 
call setup    ! initial values 
call history  ! extrapolate 4 today’s usage 
! find product percentages for all Refineries in order to maximize profit. 
find totProdPrct     in refineries     by jupiter 

matching errsum      to maximize profit 
End 
Model refineries 

pollution=0:  profit=0:  cost=0:  errSum=0 
do i=1, nProducts 
  do j=1, nRefineries 
     sameProd(j) = totProdPrct(j, i) * totCrudeIn(i) 
  end do 
  crudeUsed = 0:  crudeErr=0 
! finds qty production @ each refinery to minimize overall pollution 
 
! to restrict prod., e.g. 3rd qty, set hi(3) = low(3) 

 
find sameProd    in processing    by Jove 

with upper hi    and lower low 
matching crudeErr      to minimize pollution 

 
  do j=1, nRefineries 
errSum=errSum+ (sameProd(j) - totProdPrct(j,i) * totCrudeIn(i))**2 
  end do 
end do 
! find best routes to deliver products 
 
ooo 
 

find routes   in distribution   ooo   to minimize distPollution 
profit = profit - cost 

end 
Model distribution 
  distPollution =0 
! your (algebraic?) equations that model your distribution go here. 
 
ooo 
 

  distPollution = distPollution + ??? 
End 
Model processing ! jth distillation unit @ refinery 
! assume distillation requires solving a PDE or two.  So below is the bases for solving a PDE. 

t=0:  tPrt= tPrint 
do k = 1, nDistUnits( j) 

kDistModel = ??? 
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Initiate ISIS  for PDEquations   ooo 
do while (t .lt. tFinal) 
  Integrate PDEquations    by ISIS 
  if( t .ge. tPrt) print 79, t, (U(ii),ii=1,ip) 
  tPrt=tPrt + tPrint 
end do 

end do 
crudeErr=crudeErr+(totCrudeIn(j)– crudeUsed)**2 

79  format( 1x,f8.4,20(g14.5, 1x)) 
end 
Model PDEquations 

if( kDistModel .eq. 1) then 
  pde_1= pde equations with parameters  
! assume # 3, 7, & 8 products are created 
qtyProd(3) = qtyProd(3) + ??? 
qtyProd(7) = qtyProd(7) + ??? 
qtyProd(8) = qtyProd(8) + ??? 

elseif( kDistModel .eq. 2) then 
  pde_2= pde equations with parameters  
! assume # 2 & 8 products are created 
qtyProd(2) = qtyProd(2) + ??? 
qtyProd(8) = qtyProd(8) + ??? 
 
ooo 
 

elseif( kDistModel .eq. k) then 
pde_k= pde equations with parameters  
! assume # 1, 2, & 8 products are created 
qtyProd(1) = qtyProd(1) + ??? 
qtyProd(2) = qtyProd(2 )+ ??? 
qtyProd(8) = qtyProd(8 )+ ??? 

end if 
crudeUsed = crudeUsed + ??? 
pollution= pollution + ??? 
cost= cost + mfgCost + distCost + ??? 
profit = profit + ??? 

end 
procedure Setup 

allot totProdPrct(nRefineries, nProducts), hi(nProducts), low(nProducts), ooo 
 
! today’s available Crude Oil at different refineries 
  <totCrudeIn>=data( …’ available crude INPUT levels at each Refinery goes here’ …> 
<totHi>= data( … storage limits for various products goes here …) 
<totLow>= data( … target amounts less inventory goes here …) 
<nDistUnits>=data( … # of distillation units @ each refinery goes here …) 

End 
procedure history 

! here, use past history to estimate today’s oil needs 
  totQtyOut( 1,1)>=data( …’ amount of crude oil to be targeted for today at the 1st Refinery goes here’ 
  totQtyOut ( 2,1)>=data( …’ 2nd Refinery’ …) 
    ooo 
  totQtyOut (nRefineries,1)>=data( …’ nth Refinery’ …) 

end 
 

This example shows nesting of find statements that will help maximize productivity.  Getting agreement on 
what a companies objective is or should be may take some time.  It is hoped that this example will aide you 
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on solving your problem with Calculus programming.  Solve not just one equation but your entire 
problem/project in one program. 

Influential Parameters 
Grade of crude oil, air quality, types of distillation units available, number of distillation units available, etc. 
at each refinery are important parameters that will be necessary for this program to find the optimum solution 
for each day it is executed.  These parameters need to be included in ones math model.  Such parameters (and 
their derivatives) will aide the built-in solvers in finding the amounts, locations, & distillation units at each 
refinery in order to maximum company’s profit. 

Findings 
A computer simulation may look good on paper but 
implementing the method may be a problem.  In the 
1960s or 70s, the Chevron refinery at Richmond, CA 
implemented a computerized monitoring system at 
each of their control rooms.  It was found that the 
average employee started their eight hour shift by 
tweaking their controls to settings that they new 
were safe.  For the rest of their shift they read books 
or did other things of self interest.  Then the 
computer monitor was turned on along with the 
plant manager telling these controllers that they 
could earn gold or silver or red stars as rewards for 
doing a good job of improving oil production.  The 
computer monitors would ‘watch’ their tweaking.  If 
they went into an unsafe zone for any control, it would stop them.  After a few weeks most controllers were 
tweaking their controls to maximize some oil production and thus were receiving some gold/silver/red stars. 

This program built in-house competition that resulted in a huge increase in productivity.  (I don’t know 
prices of the 1960s or 70s.  Let’s us today’s prices for this example.)  Say that crude oil cost $50 / barrel and 
after refinement, sold for $100 / barrel.  One element in the refining process was Black Gold.  Say it 
increased one once per barrel.  Today, Gold is selling for above $1,100 per ounce.  Thus, this competition 
with computer monitoring, yielded a $1,000 / barrel interest in profit; a ten fold increase! 

We are not talking peanuts here. 

Computer Output: What if an output listing shows zero volume of oil should be produced by the kth 
distillation unit at the jth refinery.  If it continually shows a zero volume for several weeks, then it might be 
saying its time to replace the unit.  Or, maybe you need to add a new product such as the tire companies did 
when they added shoes to their production line.  Time to think outside the box. 

Future 
Maintaining a program such as the one described here is relatively simple.  If the number of products or 
refineries or distillation models changes then update the number in code.  If the company objective changes 
then some more code may need to be added and/or deleted.  It’s pretty simple! 

Keeping your distillation (math) models updated is essential.  Each refinery must routinely verify that the 
models are correct for their refinery.  Here is where you will spend most of your time for keeping this type 
program valid. 

Feedback Request 
How many companies are interested in solving their similar problem?  At present, this program may not 
work due to amount of storage necessary.  In order to fix this storage problem, we need your values for 
‘nRefineries’ & ‘nProducts’.  The product of nRefineries * nProducts may be the problem.  Assume each is 
100 then their product is 104.  Internal arrays (e.g. jacobian) is the square of this product, 108!  Knowing that 
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the majority of problems would work with 10n would provide a target value for future releases of Calculus 
compilers. 

If interested in solving such production problems please contact FortranCalculus.



 2011 Optimal Designs Enterprise Miscellaneous 118 

9 Miscellaneous 
Application Problem 9.1 

Monte Carlo Simulation OR Total Derivative? 
Exact Derivative Calculations 

Problem Description 
For those wanting a tolerant design or analysis using the Monte Carlo Simulation method to 
estimate a derivative, why not try a Calculus-level compiler in order to do such calculations 
exactly to the number of digits your computer will allow. 

The total derivative of a function is stated mathematically as dcc i
i

F
dF  


  where ci equals 

the ith component of the total project.  The total variance would be 
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where the partial derivatives, 
ci

F




, may be calculated for you. 

The following code is just a rough sketch of necessary code to solve such a problem 

Computer Code 
global all 
problem totalDerivative 
    ooo 
  invoke GRADIENTS on var1, var2, var3   in equat 
    ooo 
  print *, ‘df, Dvar1, Dvar2, Dvar3=’, df, Dvar1, Dvar2, Dvar3 
end 
model equat 
    ooo 
  f = function of ...,var1,var2,var3, ... 
  Dvar1= 1.234:  Dvar2= 9.8765:  Dvar3= 543.21 
  df=sqrt((#PARTIAL(f,var1) * Dvar1)**2 & 
    + (#PARTIAL(f,var2) * Dvar2)**2 + (#PARTIAL(f,var3) * Dvar3)**2) 
    ooo 
end 
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Stiff Equations & Trouble Shooting 
Application Problem 9.2 

Stiff Equations 
 

What is the definition of a Stiff Equation? 

Wikipedia: definition: “In mathematics, a stiff equation is a differential equation for which certain 
numerical methods for solving the equation are numerically unstable, unless the step size is taken 
to be extremely small. It has been proven difficult to formulate a precise definition of stiffness, but 
the main idea is that the equation includes some terms that can lead to rapid variation in the 

solution.”13 

PROSE’s definition: “An ODE system is termed stiff when it contains greatly differing time 
constants or oscillation frequencies.  Conventional integration techniques are impractical for such 
systems because they require inordinately small step sizes to achieve acceptable accuracy and 

stability.”14 

Scholarpedia’s definition: “Stiff systems of ordinary differential equations are a very important 
special case of the systems taken up in Initial Value Problems. There is no universally accepted 
definition of stiffness. Some attempts to understand stiffness examine the behavior of fixed step 
size solutions of systems of linear ordinary differential equations with constant coefficients. The 
eigen values of the Jacobian matrix completely characterize the stability of the system in this case. 

They also determine the behavior of explicit numerical methods applied to the system.”15 

Elsewhere on the Web: "stiff differential equations are those with two or more widely differing 
scales. For example, the solution could have a component that quickly becomes insignificant, and 
another component that changes much more slowly." 

Since there is no clear definition of a stiff equation, we will enlarge this problem class to include 
all ODEs/PDEs that have difficult converging on a solution. 

 

Problem Description 

Flat Spots: Solvers have numerical difficulties whenever ones equation(s) have one or more flat 
spots, i.e. say five or more consecutive points that make a flat line.  This situation will provide a 
solver with a derivative value of approximately zero and eventually lead to numerical problems 
when trying to converge on a solution. 

                                                 
13 As stated on Wikipedia’s webpage http://en.wikipedia.org/wiki/Stiff_equation , on June 14, 2011. 
14 “PROSE Calculus Manual” 5-11 
15 As stated on Scholarpedia’s webpage http://www.scholarpedia.org/article/Stiff_systems, on June 14, 
2011. 
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Trouble Shooting 
Calculus-level programming minimizes the user’s code necessary to describe ones math problem.  
When an execution problem arises here are some steps to locate ones errors: 

1. Replace all ‘find’ statements with ‘call’ statements 

e.g. replace ‘find a, b;    in MyEqs;    o o o’ 

with ‘call MyEqs’ 

2. Place a print statement in your math model procedure that prints some variables that 
should be changing upon each execution of your model. 

3. Place a print statement at beginning of your ‘MyEqs’ routine called by your ‘find’ 
statement.  This print should contain some text for use in search through your output; e.g. 
print “starting”.  After execution, search for your text and see if other values printed seem 
to jump; i.e. values are larger after your text printed.  If so, this may suggest your ‘dx’ or 
‘dt’ or ??? is too larger.  Decrease by factor of ten and rerun problem.  Now does a search 
show a jump in value size at your printed text?  Is it improved?  If so, continue dropping 
your delta step size until satisified. 

Are the variables changing as expected?  Common problem: variable(s) are not passed into ones 
math model due to missing in common block or input parameter list.  Fix the link error(s) and 
retry.  Problem gone?  If not find other variables that are not getting into your model.  (Note: 
Highly recommend using some form of a ‘global’ statement to pass variables.) 

4. Try various solvers in each ‘find’ statement. 

A common error message from solvers says something along the line of ‘your model produces a 
zero jacobian matrix’.  This error may mean some parameters, that you are varying, are missing a 
link and thus have values of zero or you have an underdetermined system this is ill-conditioned or 
unstable. 

Underdetermined system may exist if the number of equations is less than the number of 
independent variables.  For example, if you have the find statement ‘find a, b, c;  in MyEqs;  ooo’ 
try removing ‘c’ variable then ‘b’ variable to see if that gets your ‘find’ statement working like it 
should.  If decreasing the number of (independent) variables fixes the problem, then consider: 

a. Try other solvers; 

b. Add some bound statements, i.e. Lower and/or Upper; or, 

c. Try better initialization values for variables/parameters.  Suggest trying values of zero, 
1e-4, 1, 11, 111, etc.  If one or more independent variable is a frequency then your 
initial value may need to be good to three significant digits.  Setting the amplitude 
parameters high for initial values may help the solver find the frequency values.  
(Note: highly recommend showing a plot with initial value settings in order to view 
ones problem.  A sinusoidal problem with zero amplitude will make it impossible for 
a solver to solve! 
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10 Conclusions 
A ‘find’ statement is the work horse of a Calculus language.  It is used in parameter estimation, 
boundary value problems, implicit equation problems, inverse problems, etc..  The find statement’s 
solver varies parameters in ones model until the stated goal is achieved.  Different solvers use either 
the jacobian or Hessian matrix to estimate where to jump next with ones parameter values.  The 
partials are calculated using ‘automatic differentiation’ (AD) and thus are as exact as one’s 
computer. 

How good is your math model? 
Are you sure that all effects are accounted for in your math model?  People comment more on ‘bad’ 
math models than on ‘good’ models.  For example, what is the ‘worst condition’ versus ‘best 
condition’ for a forest fire?  Asking about the ‘worst’ got more comments.  People seemed to have 
more to say or were willing to say something regardless of their background. 

Keep your models up to date.  Calculus Compilers make that easy to do.  After all, a good math 
model is worth its weight in gold. 

 

 

 

 

10.1 Future: Thinking outside the box 

 
One’s Vision 

                  

Mr. Arithmetic Mr. Algebra Mr. Calculus 
____________ ___________ _____________ 

Before Computers With Computer, 
Gained some vision 

Optimize the Whole 
Show in One Run 

Process Methodology: 
   

One Step at a Time Simulate Problem on 
Computer 

Find Optimal Solution. 
Must ‘See’ Entire 
Problem & Objectives 

Today, most individuals are working on getting their math model to provide an accurate description 
of one component of a project.  We would suggest moving past that and on to considering all 
components of a project or site or company.  For example, those working at an oil refinery, they 
may be modeling one distillation unit.  Why not consider modeling the whole refinery?   This is 
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now possible with a Calculus-level compiler.  Finding the right objective  may be an issue for total 
project simulation.  This may require input from engineers to president of company. 

 

Where are you going? 

What is your Company’s Objective? 

Most companies should have several levels of objectives as shown in the chart below.  All 
Company level objectives must be known by all employees and clearly stated in order to achieve all 
goals/objectives.  For example, a person sweeping the floor might change from a left-to-right 
movement to a right-to-left movement if they knew that some objective might be improved upon by 
such a change in their work.  Get the word out, “Our company’s goal is ooo “. 

Keep it simple, like a slogan, and easy to remember.  Limit your Company level objective to one or 
two key words; i.e. maximize profit while minimizing pollution.  The more confining the 
objective, the less freedom for creative solutions. 
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In the 1970s, I asked one of my key leaders what our company goal was in the disc drive industry.  
He replied ‘minimize cost’.  In this world of computers, minimize cost would be equivalent to 
minimize cost regardless of profit, quality, sales, etc.  On the other hand, maximize profit as a 
goal/objective would minimize cost whenever possible and did NOT affect profit.  Sales, quality, 
etc. would be effected ONLY IF they did not reduce profit.  When explained this way, the senior 
leader changed to ‘maximize profit’ as our goal.  Pick your goal/objectives carefully!  Get input 
from everyone to be sure you didn’t overlook some important effect of your goal. 

What is Your Project Objective(s)? 
 

Minimize cost 
Maximize Profit 

Minimize Pollution 
Maximize Productivity 

Minimize Weight of Products 
Maximize Green Energy Usage 
Minimize Customer Complaints 

 
All The Above!

____________________________________ 
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Conclusions 
Calculus-level languages offer an easy way to solve many parameter estimation  problems.  These 
quick solutions help one keep their math models up to date and debugged.  But more accurate 
answers may be of little use if a Statistical Process Control  (SPC) program or similar program is 
not used to monitor one’s production process.  How does one know that their process is doing the 
right job if they have no process monitoring system? Is the process producing goods that are good to 
the nth degree; ‘n’ is your choice?  If one’s solution is to be reproduced then a Statistical Process 
Control program must be in use at one’s company in order to achieve the solutions from Calculus-
level software. 
 
It is hoped that the examples in this textbook are helpful and prove the point that Calculus-level 
programming is simple.  Now you need to prove it to yourself.  Write your own Calculus code and 
execute it.  Did it save you time?  Was it easy to debug and get a reasonable answer?  How many 
parameters did you vary in an execution? 

Give FortranCalculus a try!
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11 Appendix 
Picking the right Solver 

It sure is nice having solvers in a library where a user can pick from and not get involved into all 
their codes.  There are two items to consider when picking a solver. 

1. Are all your parameters independent of each other?  If so, a 1st order (e.g. jacobian) solver 
should do the trick for you (e.g. Ajax).  For a 2nd order solver example, curve fitting a sine 
series [ai sin( freqi t + thetai)] to data has dependant parameters (ai, & freqi) and thus needs a 
solver using the 2nd order partials (e.g. Hessian matrix) to resolve this conflict. 

2. Memory in short supply?  If so, stay with 1st order solvers using the jacobian matrix or the 
like. 

 

‘aplot’ source code 
 
procedure aplot( plot77) 
  character*(*) plot77 
  @plots( 'error', 1)  ! error plot 
  @plots( plot77, 0)  ! measured data vs. calc. 
curve 
end 
procedure plots( plot77, ierror) 
  common /rr/ v(3), vc(3), pw50(3), t0(3), 
+  npoints, deltat, data(100), time(100), 
error(100) 
  character*(*) plot77 
  real*8 signal( 100) 
  @graph(plot77, '2dgraph') 
  xmin= -300:    xmax= 300   ! time( npoints) 
  ymin= 1.e10:   ymax= -ymax 
  do 10 i= 1, npoints 
    if( ierror .ne. 1) then 
      signal(i)= error(i) + data(i) 
      if( ymin .gt. data(i)) ymin= data(i) 
      if( ymax .lt. data(i)) ymax= data(i) 
    else 
      signal(i)= 1000 * error(i) 
    end if 
    if( ymin .gt. signal(i)) ymin= signal(i) 
    if( ymax .lt. signal(i)) ymax= signal(i) 
  10      continue 
  
@window(plot77,100,500,50,400,xmin,xmax,
ymin,ymax, 0,0,0,1,1.5) 
  xstep= (xmax - xmin)/8 
  @xaxis( plot77, xmin, xmax, xstep, 0, 1, 1) 
  ystep= (ymax - ymin)/6 
  @yaxis( plot77, ymin, ymax, ystep, 0, 1, 1) 

  @xelabel( plot77, 9, 'Time (ns)', 11) 
  if( ierror .ne. 1) then 
    @setup( plot77, 'pp', 0, 14, -2, 0) ! profile 
npoints (light yellow) 
    @setup( plot77, 'cr', 0, 10, -2, 0) ! profile 
curve (light green) 
    @yelabel( plot77, 14, 'Amplitude (v)', 11) 
  else 
    @setup( plot77, 'er', 0, 12, -2, 0) ! error 
curve (light red) 
    @yelabel( plot77, 20, 'Error Amplitude 
(Mv)', 11) 
  end if 
  @label( plot77, 25, 'Isolated (ReadBack) 
Pulse', 13, 190, 460,0) 
  if( vc(1)+vc(2)+vc(3) .eq. 0) then 
    @label( plot77, 13, 'with out "vc"', 14, 245, 
446, 0) 
  else 
    @label( plot77, 9, 'with "vc"', 14, 255, 446, 
0) 
  end if 
  do 20 j=1, npoints 
    if( ierror .ne. 1) then 
      @curve( plot77, 'pp', time(j), data(j)) 
      @curve( plot77, 'cr', time(j), signal(j)) 
    else 
      @curve( plot77, 'er', time(j), signal(j)) 
    end if 
   20   continue 
  @show( plot77) 
end 
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Spectral Estimation (freeware) Software 

 

How to find key frequencies in y(t)?  This question has been worked on by many over the years.  
The freeware SpectrumSolvers program, download at https://goal-
driven.net/apps/spectrumsolvers.html, provides some 12 methods that give frequency estimates 
of your time series data. 

SpectrumSolvers (tm) has a menu of Spectral estimators from Steve Kay's textbook, titled "Modern 
Spectral Estimation", 1988.  The results differ dramatically from one estimator to another as shown 
by one test case where all methods were used and their results shown in Steve’s book.  The ‘true’ 
Power Spectral Density (PSD) plot is shown in the center of his page. 

At the bottom of a run, SpectrumSolvers lists all key (i.e. peaked) frequencies.  It is highly 
recommend that one uses these frequencies as starting values when trying to solve for a frequency 
parameter(s) in a math model.  Start with the frequencies that are the strongest (i.e. highest 
amplitudes) in your output listing from SpectrumSolvers. 

 

 

 

‘readrit1.100’ File Listing 
 

 
 

------- Lorentzian Series ... test case ---------   Optimal Designs Enterprise 
   Y-offset (Y0): 0.0000 
   Amplitude(s): -0.2000 0.9000 -0.1700 
  Pulse Width @50% Peak(s): 88.00 70.00 71.00 
   Time origin offset(s): -54.30 6.660 35.70 
 --->  No. of data points: 100 
 ============================ Header lines = 7 
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-245 .0042924609 
-240 .0043593047 
-235 .0044219848 
-230 .0044793115 
-225 .0045298648 
-220 .0045719490 
-215 .0046035393 
-210 .0046222163 
-205 .0046250875 
-200 .0046086919 
-195 .0045688848 
-190 .0045006980 
-185 .0043981701 
-180 .0042541421 
-175 .0040600098 
-170 .0038054259 
-165 .0034779442 
-160 .0030625975 
-155 .0025414051 
-150 .0018928092 
-145 .0010910543 
-140 .00010554257 
-135 -.0010997576 
-130 -.0025667058 
-125 -.0043429180 
-120 -.0064807673 
-115 -.0090346669 
-110 -.012055358 
-105 -.015579208 
-100 -.019609577 
-95 -.024086370 
-90 -.028839435 
-85 -.033523058 
-80 -.037534698 

-75 -.039934312 
-70 -.039400857 
-65 -.034280079 
-60 -.022768189 
-55 -.0032151243 
-50 .025564682 
-45 .064135166 
-40 .11251947 
-35 .17043669 
-30 .23748947 
-25 .31309585 
-20 .39603570 
-15 .48359078 
-10 .57045233 
-5 .64796448 
0 .70475713 
5 .72970477 
10 .71655238 
15 .66731736 
20 .59172363 
25 .50319606 
30 .41441986 
35 .33459370 
40 .26854898 
45 .21719202 
50 .17877824 
55 .15043056 
60 .12930122 
65 .11312956 
70 .10033113 
75 .089869354 
80 .081085418 
85 .073559765 
90 .067018123 

95 .061273445 
100 .056191676 
105 .051671955 
110 .047635172 
115 .044017227 
120 .040764939 
125 .037833452 
130 .035184494 
135 .032785148 
140 .030606944 
145 .028625155 
150 .026818228 
155 .025167328 
160 .023655954 
165 .022269617 
170 .020995564 
175 .019822551 
180 .018740643 
185 .017741042 
190 .016815943 
195 .015958408 
200 .015162258 
205 .014421979 
210 .013732640 
215 .013089826 
220 .012489573 
225 .011928321 
230 .011402861 
235 .010910298 
240 .010448019 
245 .010013655 
250 .0096050618 

 

 

 

‘readrit2.200’ File Listing 
 

 
 

---- Lorentzian Series ... test case ----- Optimal Designs Enterprise 
Y-offset (Y0): 0. 
   Amplitude(s): -.070 .8000 .2000 
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  Pulse Width @50% Peak(s): 88.00 77.00 99.00 
Time origin offset(s): -40.00 .0000 111.0 
 --->  No. of data points: 200 
 ============================ Header lines = 7 
-297 .01412870 
-294 .01439184 
-291 .01466242 
-288 .01494072 
-285 .01522705 
-282 .01552171 
-279 .01582504 
-276 .01613736 
-273 .01645904 
-270 .01679047 
-267 .01713203 
-264 .01748415 
-261 .01784725 
-258 .01822181 
-255 .01860831 
-252 .01900726 
-249 .01941920 
-246 .01984470 
-243 .02028436 
-240 .02073881 
-237 .02120872 
-234 .02169480 
-231 .02219779 
-228 .02271849 
-225 .02325773 
-222 .02381640 
-219 .02439544 
-216 .02499585 
-213 .02561868 
-210 .02626505 
-207 .02693617 
-204 .02763330 
-201 .02835779 
-198 .02911108 
-195 .02989471 
-192 .03071031 
-189 .03155963 
-186 .03244453 
-183 .03336702 
-180 .03432923 
-177 .03533344 
-174 .03638211 
-171 .03747787 
-168 .03862355 
-165 .03982218 
-162 .04107706 
-159 .04239169 
-156 .04376989 
-153 .04521577 
-150 .04673377 
-147 .04832872 
-144 .05000585 
-141 .05177082 
-138 .05362984 
-135 .05558965 
-132 .05765762 

-129 .05984182 
-126 .06215114 
-123 .06459535 
-120 .06718525 
-117 .06993283 
-114 .07285141 
-111 .07595593 
-108 .07926313 
-105 .08279196 
-102 .08656392 
-99 .09060362 
-96 .09493937 
-93 .09960396 
-90 .1046356 
-87 .1100794 
-84 .1159883 
-81 .1224253 
-78 .1294658 
-75 .1371992 
-72 .1457328 
-69 .1551938 
-66 .1657326 
-63 .1775246 
-60 .1907714 
-57 .2056995 
-54 .2225562 
-51 .2416019 
-48 .2630972 
-45 .2872868 
-42 .3143780 
-39 .3445161 
-36 .3777576 
-33 .4140398 
-30 .4531474 
-27 .4946768 
-24 .5379979 
-21 .5822193 
-18 .6261670 
-15 .6683907 
-12 .7072152 
-9 .7408511 
-6 .7675654 
-3 .7858934 
0 .7948501 
3 .7940875 
6 .7839522 
9 .7654240 
12 .7399552 
15 .7092559 
18 .6750800 
21 .6390534 
24 .6025644 
27 .5667154 
30 .5323222 
33 .4999442 
36 .4699282 

39 .4424565 
42 .4175903 
45 .3953065 
48 .3755265 
51 .3581384 
54 .3430114 
57 .3300068 
60 .3189835 
63 .3098015 
66 .3023225 
69 .2964089 
72 .2919214 
75 .2887158 
78 .2866390 
81 .2855254 
84 .2851929 
87 .2854408 
90 .2860490 
93 .2867806 
96 .2873869 
99 .2876170 
102 .2872302 
105 .2860109 
108 .2837841 
111 .2804288 
114 .2758872 
117 .2701674 
120 .2633404 
123 .2555296 
126 .2468973 
129 .2376283 
132 .2279146 
135 .2179418 
138 .2078791 
141 .1978733 
144 .1880457 
147 .1784914 
150 .1692813 
153 .1604648 
156 .1520725 
159 .1441205 
162 .1366129 
165 .1295446 
168 .1229042 
171 .1166757 
174 .1108398 
177 .1053757 
180 .1002616 
183 .09547578 
186 .09099647 
189 .08680289 
192 .08287509 
195 .07919419 
198 .07574241 
201 .07250314 
204 .06946092 
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207 .06660142 
210 .06391134 
213 .06137842 
216 .05899135 
219 .05673970 
222 .05461388 
225 .05260503 
228 .05070503 
231 .04890638 
234 .04720218 
237 .04558608 

240 .04405223 
243 .04259523 
246 .04121010 
249 .03989223 
252 .03863739 
255 .03744164 
258 .03630135 
261 .03521315 
264 .03417392 
267 .03318077 
270 .03223102 

273 .03132216 
276 .03045188 
279 .02961801 
282 .02881854 
285 .02805159 
288 .02731542 
291 .02660838 
294 .02592894 
297 .02527568 
300 .02464726 
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Arbitrary Equalization with Simple LC Structures 

Robert Kost, MEMBER IEEE, and Philip Brubaker 

Abstract-Equalization for magnetic recording with LC filters 
was reported in 1963 [1], and since then many other 
approaches have been used to alter the readback signal to 
reduce error. These ideas have been extended to arbitrary 
input-arbitrary output fillers which are realized as LC 
structures without mutual inductance. An asymmetrical 
signal from an isolated pulse is equalized to become optimum 
in the linear Van der Maas sense [2]. The change in the 
signal to noise ratio as a result of equalization is computed 
as a function of pulse slimming. 

INTRODUCTION 

Implicit in efficient utilization of a 
communication channel is proper signal 
design. This can be illustrated by noting that 
the Nyquist limit cannot be achieved for an 
arbitrary symbol (pulse) shape, but only for 
symbols that have the proper zero crossings. In 
general then, equalization will be required to 
effectively use the available bandwidth. If the 
readback signal can be viewed as coming from 
a linear system which has a restricted set of 
input signals, a linear filter can be used to 
remove intersymbol interference. The 
conditions under which this notion is valid 
were reported in 1969 and 1978 [3,4]. If the 
equalizer is viewed as a windowed inverse 
filter, it is clear, at least in principle, that the 
readback signal can be altered to more 
effectively utilize the bandwidth. 
 
This is a report of a frequency domain design 
of an equalizer with the input frequency 
function derived directly from an isolated 
readback pulse. The output frequency function 
is the linear Van der Maas quasi-optimum 
approximation. The equalizer's pole-zero 
constellation is determined by using a 
nonlinear optimization routine available in the 
PROSE language [5]. The filter is realized so 
that mutual inductance is not possible [6]. 
Additionally, the realization can be 
accomplished with closed form expressions 
without recourse to insertion loss filter design. 

 
Since the equalizer affects the signal to noise 
ratio, a discus-sion of the minimum signal to 
noise change is included. 

Input Signal Acquisition  

The Fourier transform (FT) of an isolated 
readback pulse is computed by taking the 
Fourier transform of signal samples (FT*) [7]. 

Since the time data are rectangularly 
windowed and band limited the FT* is a least-
square fit to FT [8]. Because of this, FT* is 
least-square fitted to estimate FT. The time 
function, t(ω), is obtained by taking the 
negative derivative of the phase function. The 
input frequency function is described in the 
following way:  

 (1) 

The magnitude and the time functions are 
shown in Fig. 1. It is interesting to note that 
there appears to be a discontinuity at the origin 
in the phase function. No fundamental reason 
was found for this.  

Output Signal Design  

For systems that use peak detection, loosely 
stated requisites for a signal are that it be 
narrow and the sidelobe disturbance be low. 
These were the criterion that were used to 
design the pulse that Vakman refers to as 
quasi-optimal [2]. 
 
This pulse was designed to give the narrowest 
pulse for a specified bandwidth and sidelobe 
suppression. The width of the pulse (distance 
between zero crossings) for 60 dB sidelobe 
suppression is 15.48/WB where WB, is the 
bandwidth.  

 
Fig. 1a. Time function of isolated readback signal 
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Fig. 1b. Magnitude function of isolated readback signal. 

FILTER APPROXIMATION  

It should be noted that since this is going to be 
an LC filter realization, the group delay of the 
filter is completely a function of the pole 
locations. The zeros do not contribute to the 
filter group delay. With this in mind, the 
design process is broken into three stages:  

1) adjust the filter pole locations only until the 
output frequency function's time function, 
t(ω), is approximately constant.  

2) adjust the zero locations (while holding the 
pole locations constant) until the magnitude 
of the output frequency function is 
satisfactory.  

3) adjust all critical frequencies 
simultaneously while constraining the 
maximum group delay error.  

Consider the following definitions:  

X(ω) = input frequency function  

Hj(ω) = equalizer transfer function at j’th 
iteration 

Yj(ω) = equalizer transfer function at j’th 
iteration 

Yd(ω) = equalizer transfer function at j’th 
iteration  

C(ω) = equalizer transfer function at j’th 
iteration  

where:  

Yj(ω)= Hj(ω) X(ω)  (2) 

The objective function, θj, to be minimized is 
defined to be:  

 
k

k
jEj  2

 

where  

 (3) 
and ωk are discrete values of ω.  

The equalizer's pole-zero constellation is 
obtained by iteratively adjusting the root 
locations until the objective function is 
minimized. The calculation is done by a 
nonlinear optimization routine available on 
PROSE, while the filter is being driven by the 
frequency function of an isolated pulse. 

FILTER REALIZATION  

During the approximation portion of the 
design, terminated reactance two port 
realization conditions were carefully observed. 
This will guarantee that the equalizer can be 
built as an LC filter. These realizability 
conditions, however do not guarantee a filter 
without mutual inductance or negative element 
values. In addition to these problems, the LC 
structures often have impractical element 
values. All of these problems can usually be 
avoided by the synthesis approach that is now 
going to be described.  
 
The basic topology to be used is referred to as 
"additive amplification" [9,l0,11,12]. This 
topology involves injecting currents into nodes 
of an LC ladder filter. The output voltage of 
this design is the sum of the voltages due to 
the individual current sources, hence the name 
"additive amplification."  
 
Consider a voltage-controlled current source 
driving node r of an all-pole singly-terminated 
LC filter. The output voltage due to this 
single-current source is well known and is 
given by [13]:  

 (4)  
where V(r)

o is the voltage across R due 
to current sourcing at node r and gm is 
transconductance of the current source.  
 

Using equation (4), the transfer function of the 
filter will be:  
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  (5)  

The transconductance of the r'th source can be 
related to the transconductance of the 1'st 
source (unterminated end of LC filter) by a 
multiplicative constant:  

)1()( )( gmgm cr

r   (6) 

Also, the transfer impedances between the 
nodes and the output can be related. Using 
these ideas in equation (5) yields:  

  (7)  

where k is the number of nodes being 
driven by current sources and ak are 
constants that relate the component values 
of the filter. 

It is clear that the transfer function of this 
realization is related to the LC ladder transfer 
function by a multiplicative even polynomial. 
This results in k-1 unknowns and k-1 linearly 
independent equations.  

Since all-pole LC filters are guaranteed not to 
contain mutual inductance and the element 
values are nearly always positive and do not 
change by more than about a factor of ten, this 
realization procedure circumvents many of the 
problems attendant with insertion loss design.  

Two filters with the same pole-zero 
constellation are shown in Fig. 2. The first was 
designed with standard insertion loss 
techniques while the second is similar to Fig. 
6-11 in [12]. The improvement, as far as 
practical implementation goes, in the "additive 
amplifier" approach is self-evident.  

The all-pole filter can be realized by using 
insertion loss theory (the driving point 
impedance is the ratio of the even and odd 
parts of the transfer function numerator) or 
closed form expressions can be derived. The 
closed form expressions can be derived by 
expressing the transfer function in terms of its 
pole locations and in terms of its element 
values. By equating the coefficients of the 
denominator of these two transfer functions, a 
set of linear equations will be formed that will 

result in closed form expressions for the 
element values in terms of the pole locations.  

 
Fig. 2a. Comparison of an insertion loss 
realization 
          b. With a multi-input realization 

FIGURE OF MERIT  
An important consideration for an equalizer 
design involves the change in the signal to 
noise ratio (SNR) introduced by the equalizer. 
Here the SNR is defined as the peak signal to 
the rms noise voltage. The figure of merit 
(FM) of the filter is the ratio of the input to the 
output SNR expressed in dB. The computation 
was done numerically with the input signal 
being Lorentz, the output signal being Van der 
Maas and the noise power spectral density was 
taken directly from a disc. The FM as a 
function of the ratio TM/PW50 is shown in 
Fig. 3 where TM is one-half the distance 
between the zero slope points on the Van der 
Maas (VDM) time function.  

 

Fig. 3. Figure of merit  

FILTER DESIGN EXAMPLE  

An equalizer to remove intersymbol 
interference in the time derivative of the 
slimmed output is now designed to illustrate 
the ideas discussed thus far. The input signal 
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has a PW50 of about 110 ns and the output 
VDM frequency function has a cutoff 
frequency of 12.36 MHz. Initially, the pole 
locations of the filter were adjusted to equalize 
the group delay to 10 MHz. This resulted in a 
time function error (deviation from a constant) 
of 1.5 ns. Then the zeros were adjusted to 
minimize the magnitude error. A SPICE 
analysis of the equalizer showing the input and 
the output are shown in Fig. 4.  

 

Fig. 4. Spice simulation of example design 

CONCLUSIONS  

During the process of developing this design 
approach, it became clear that a more 
appropriate approach would be to specify the 
objective function in the time domain. This 
would completely circumvent the need for 
having precise information about the group 
delay, for example. Only a modest change is 
required to change the procedure described 
here into a time domain design. 
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Incomplete Problems: can you help complete one or more? 
 

These problems started some time ago and contact was lost with authors.  If you 
recognize a problem and understand what the author was trying to do and known the 
goal/objective for a problem, please contact us with additions and changes so we can 
publish a complete problem with solution.  Your name will be added to problem in order 
to give you the credit for defining the problem. 

For latest work on Math Problem-Solving, click here 
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2nd order non-linear ode, 49 
3rd order non-linear ode, 52 
algebraic equations, 9 
algebraic models 

custom thermistor design, 95 
damped sinusoidal signal, 24, 47 
magnetic recording intro, 9 
optimum matched filter, 35 
pharmaco-kinetics, 27 
plane crash reconstruction, 105 
robot arm movement, 102 
sinusoidal signal, 22 
tfh design, 13, 16, 18, 20 

automatic differentiation, 6 
bode plot, 36 
boundary value problems, 6, 48, 67, 85, 98 
burgers’ equations, 88 
bvp. See boundary value problems 
bvp models 

3rd order non-linear ode, 52 
burgers equation, 93 
drug development, 98 
telegrapher’s equations, 91 

company objectives, 124, 125 
compiler, calculus-level, 6, 13, 49, 52, 68, 120, 124 

FortranCalculus, 3 
prose, 3, 74 

continuously differentiable, 6 
converting 

boundary value problem, 93 
initial value problem, 84 

curve fitting, 9 
damped sine series, 24, 47 
lorentzian series, 13, 15, 16 
mod. lorentzian series, 18, 20 
sine series, 6, 22 
thin-film-head, 15 

data file, 128, 129 
download source code, 14 
errors in model, 8 
exercises, 34, 93 
find statement, 6, 22, 35, 37, 48, 67, 85, 94, 95, 106, 

122 
FortranCalculus language, 3 
fourier transform, 46 
frequency parameters, 6, 23 

spectral estimation, 128 
future outlook, 123 
heat transfer over slab, 99 
implicit equations, 106 

drug development, 98 
implicit models 

2nd order implicit differential equation, 110 
algebraic, 107 

incomplete problems 
body plasma chemistry, 73 

inequalities, 30 
initial value problems, 6, 48, 67, 71, 85 
initial values, 8 
integration statements, 48, 64 
inverse problems, 27, 44, 94, 95, 97, 102, 105 
ip. See inverse problems 
ip models 

custom thermistor design, 95, 97 
drug development, 98 
heat transfer over slab, 99 
optimum matched filter, 44 
pharmaco-kinetics, 27 
plane crash reconstruction, 105 
robot arm movement, 102 

ivp. See initial value problems 
ivp models 

2nd order non-linear ode, 49 
non-linear equation of motion, 64 
system of pdes, 71 

jacobian matrix, 30 
laplace domain, 35 
laplace transforms, 35, 44 
lorentz equations, 68 
lorentz function, 10, 13, 52 
lorentzian series, 6, 9, 10, 13 

modified, 10, 18 
magnetic recording intro, 9 
mainlobe & sidelobe plots, 36 
manage by objectives, 3, 124, 125 
matched filter, 35, 44, 132 
math model, 7 
math models 

algebraic, 9 
laplace transforms, 35 
ode, 48 
pde, 85 
systems of ode/pde, 67 

method of lines, 6, 99 
monte carlo simulation, 120 
nasa project, 3 
nesting, 6, 37, 55, 118 
non-linear equation of motion, 64 
objective function, 48 
objective levels, 125 
Objective-Driven Design, 32 
ode. See ordinary differential equations 
ode models 

2nd order non-linear ode, 49 
3rd order non-linear ode, 52 
bang-bang control, 55 
non-linear equation of motion, 64 
voice coil motor, 55 

oil refinery production, 115, 123 
one’s vision 

mr. algebra, 8, 123 
mr. arithmetic, 8, 123 
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mr. calculus, 8, 123 
operator overloading, 3 
ordinary differential equations, 48 
over-determined system, 49 
parameter estimation, 6, 9, 23, 126 

2nd order implicit differential equation, 110 
2nd order non-linear ode, 49 
3rd order non-linear ode, 52 
bang-bang control, 55 
burgers’ equations, 88 
bvp models, 6 
custom thermistor design, 95 
damped sine series, 24, 47 
drug development, 98 
future outlook, 123 
heat transfer over slab, 99 
inverse problems, 94 
laplace models, 35 
oil refinery production, 115 
optimum matched filter, 35 
pde models, 85 
pharmaco-kinetics, 27 
plane crash reconstruction, 105 
robot arm movement, 102 
sine series, 22 
system of odes, 68 
telegrapher’s equations, 91 
tfh design, 12, 13, 16, 18, 20 
trouble shooting, 121 

parameters 
lacking, 7 

partial differential equations, 6, 85 
pde. See partial differential equations 
pde models 

burgers’ equations, 88 
heat transfer over slab, 99 
oil refinery production, 115 
stock market to biology, 86 
telegrapher’s equations, 91 

peak shift, 42 

pendulum problem, 64 
pharmaco-kinetics, 27 
plane crash reconstruction, 105 
poles & zeroes, 35 
production monitoring, 126 
prose language, 3 
requirements for model, 6 
robot arm movement, 102 
slack variable, 30 
solar cell model, 78 
spc. See statistical process control 
spectral estimation, 6 
statistical calculations, 120 
statistical process control, 6, 16, 20, 126 
stiff equations, 121 
stock market to biology, 86 
system of differential equations, 67 
system of equations, 107 
system of odes 

lorentz equations, 68 
system of pdes 

convection reaction equations, 71 
telegrapher’s equations, 91 
tfh. See thin-film-head 
tfh model 

lorentzian series, 10, 13, 16 
mod. lorentzian series, 10, 18, 20 

thermistor design, 95 
thin-film-head 

math model, 9, 10 
results, 21 

time domain, 44 
tolerant designs/analysis, 120 
total derivative, 120 
transfer function, 35 

poles & zeros, 35, 46 
trouble shooting, 122 
under-determined system, 49, 122 
variance calculations, 120 

 
 


